In mathematics, a de Rham curve is a certain type of fractal curve named in honor of Georges de Rham.
The Cantor function, Cesàro curve, Minkowski's question mark function, the Lévy C curve, the blancmange curve, and Koch curve are all special cases of the general de Rham curve.
Consider some complete metric space (generally 2 with the usual euclidean distance), and a pair of contracting maps on M:
By the Banach fixed-point theorem, these have fixed points and respectively. Let x be a real number in the interval , having binary expansion
where each is 0 or 1. Consider the map
defined by
where denotes function composition. It can be shown that each will map the common basin of attraction of and to a single point in . The collection of points , parameterized by a single real parameter x, is known as the de Rham curve.
When the fixed points are paired such that
then it may be shown that the resulting curve is a continuous function of x. When the curve is continuous, it is not in general differentiable.
In the remaining of this page, we will assume the curves are continuous.
De Rham curves are by construction self-similar, since
for and
for
The self-symmetries of all of the de Rham curves are given by the monoid that describes the symmetries of the infinite binary tree or Cantor set. This so-called period-doubling monoid is a subset of the modular group.
The of the curve, i.e. the set of points , can be obtained by an Iterated function system using the set of contraction mappings . But the result of an iterated function system with two contraction mappings is a de Rham curve if and only if the contraction mappings satisfy the continuity condition.
Detailed, worked examples of the self-similarities can be found in the articles on the Cantor function and on Minkowski's question-mark function. Precisely the same monoid of self-similarities, the dyadic monoid, apply to every de Rham curve.
Cesàro curves (or Cesàro–Faber curves) are De Rham curves generated by affine transformations conserving orientation, with fixed points and .
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics, Minkowski's question-mark function, denoted ?(x), is a function with unusual fractal properties, defined by Hermann Minkowski in 1904. It maps quadratic irrational numbers to rational numbers on the unit interval, via an expression relating the continued fraction expansions of the quadratics to the binary expansions of the rationals, given by Arnaud Denjoy in 1938. It also maps rational numbers to dyadic rationals, as can be seen by a recursive definition closely related to the Stern–Brocot tree.
The Sierpiński triangle (sometimes spelled Sierpinski), also called the Sierpiński gasket or Sierpiński sieve, is a fractal attractive fixed set with the overall shape of an equilateral triangle, subdivided recursively into smaller equilateral triangles. Originally constructed as a curve, this is one of the basic examples of self-similar sets—that is, it is a mathematically generated pattern that is reproducible at any magnification or reduction.
In mathematics, the modular group is the projective special linear group of 2 × 2 matrices with integer coefficients and determinant 1. The matrices A and −A are identified. The modular group acts on the upper-half of the complex plane by fractional linear transformations, and the name "modular group" comes from the relation to moduli spaces and not from modular arithmetic. The modular group Γ is the group of linear fractional transformations of the upper half of the complex plane, which have the form where a, b, c, d are integers, and ad − bc = 1.
We generalize the construction of the spin-1/2 SU(2) resonating valence bond (RVB) state to the case of the self-conjugate 6 representation of SU(4). As for the case of SU(2) [J.-Y. Chen and D. Poilblanc, Phys. Rev. B 97, 161107(R) (2018)], we use the proj ...