In mathematics, the modular group is the projective special linear group of 2 × 2 matrices with integer coefficients and determinant 1. The matrices A and −A are identified. The modular group acts on the upper-half of the complex plane by fractional linear transformations, and the name "modular group" comes from the relation to moduli spaces and not from modular arithmetic. The modular group Γ is the group of linear fractional transformations of the upper half of the complex plane, which have the form where a, b, c, d are integers, and ad − bc = 1. The group operation is function composition. This group of transformations is isomorphic to the projective special linear group PSL(2, Z), which is the quotient of the 2-dimensional special linear group SL(2, Z) over the integers by its center {I, −I}. In other words, PSL(2, Z) consists of all matrices where a, b, c, d are integers, ad − bc = 1, and pairs of matrices A and −A are considered to be identical. The group operation is the usual multiplication of matrices. Some authors define the modular group to be PSL(2, Z), and still others define the modular group to be the larger group SL(2, Z). Some mathematical relations require the consideration of the group GL(2, Z) of matrices with determinant plus or minus one. (SL(2, Z) is a subgroup of this group.) Similarly, PGL(2, Z) is the quotient group GL(2, Z)/{I, −I}. A 2 × 2 matrix with unit determinant is a symplectic matrix, and thus SL(2, Z) = Sp(2, Z), the symplectic group of 2 × 2 matrices. To find an explicit matrix in SL(2, Z), begin with two coprime integers , and solve the determinant equation(Notice the determinant equation forces to be coprime since otherwise there would be a factor such that , , hencewould have no integer solutions.) For example, if then the determinant equation readsthen taking and gives , henceis a matrix. Then, using the projection, these matrices define elements in PSL(2, Z). The unit determinant of implies that the fractions a/b, a/c, c/d, b/d are all irreducible, that is having no common factors (provided the denominators are non-zero, of course).

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (9)
MATH-511: Number theory II.a - Modular forms
In this course we will introduce core concepts of the theory of modular forms and consider several applications of this theory to combinatorics, harmonic analysis, and geometric optimization.
MATH-417: Number theory II.b - selected topics
This year's topic is "Additive combinatorics and applications." We will introduce various methods from additive combinatorics, establish the sum-product theorem over finite fields and derive various a
MATH-489: Number theory II.c - Cryptography
The goal of the course is to introduce basic notions from public key cryptography (PKC) as well as basic number-theoretic methods and algorithms for cryptanalysis of protocols and schemes based on PKC
Show more
Related lectures (54)
Monster Group: Representation
Explores the Monster group, a sporadic simple group with a unique representation theory.
Representation of SL2Z
Delves into the representation of SL2Z and the function F, exploring its transformation properties and relation to modular forms.
Extremal Lattices
Explores extremal lattices, emphasizing bounds on shortest vectors and unique modular forms.
Show more
Related publications (59)

Six-dimensional sphere packing and linear programming

Maryna Viazovska, Matthew De Courcy-Ireland, Maria Margarethe Dostert

We prove that the Cohn-Elkies linear programming bound for sphere packing is not sharp in dimension 6. The proof uses duality and optimization over a space of modular forms, generalizing a construction of Cohn- Triantafillou [Math. Comp. 91 (2021), pp. 491 ...
Amer Mathematical Soc2024

K3 surfaces, cyclotomic polynomials and orthogonal groups

Eva Bayer Fluckiger

Let X be a complex projective K3 surface and let T-X be its transcendental lattice; the characteristic polynomials of isometries of T-X induced by automorphisms of X are powers of cyclotomic polynomials. Which powers of cyclotomic polynomials occur? The ai ...
Springer Int Publ Ag2024

The unipotent mixing conjecture

Philippe Michel

We show that shifted pairs of discrete or continuous low-lying horocycles equidistribute in the product space of two modular curves. ...
Jerusalem2023
Show more
Related concepts (38)
Modular form
In mathematics, a modular form is a (complex) analytic function on the upper half-plane that satisfies: a kind of functional equation with respect to the group action of the modular group, and a growth condition. The theory of modular forms therefore belongs to complex analysis. The main importance of the theory is its connections with number theory. Modular forms appear in other areas, such as algebraic topology, sphere packing, and string theory.
Modular curve
In number theory and algebraic geometry, a modular curve Y(Γ) is a Riemann surface, or the corresponding algebraic curve, constructed as a quotient of the complex upper half-plane H by the action of a congruence subgroup Γ of the modular group of integral 2×2 matrices SL(2, Z). The term modular curve can also be used to refer to the compactified modular curves X(Γ) which are compactifications obtained by adding finitely many points (called the cusps of Γ) to this quotient (via an action on the extended complex upper-half plane).
Icosahedral symmetry
In mathematics, and especially in geometry, an object has icosahedral symmetry if it has the same symmetries as a regular icosahedron. Examples of other polyhedra with icosahedral symmetry include the regular dodecahedron (the dual of the icosahedron) and the rhombic triacontahedron. Every polyhedron with icosahedral symmetry has 60 rotational (or orientation-preserving) symmetries and 60 orientation-reversing symmetries (that combine a rotation and a reflection), for a total symmetry order of 120.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.