Concept

Paradoxe du barbier

Le paradoxe du barbier est une illustration à but didactique du paradoxe de Russell, attribuée à Bertrand Russell. Il ne faut donc pas donner une importance excessive à ce « paradoxe ». Par exemple, le logicien Evert Willem Beth qualifie ce paradoxe d'« antinomie prétendue » ou de « pseudo-antinomie ». On peut énoncer le paradoxe ainsi : Le conseil municipal d'un village vote un arrêté municipal qui enjoint à son barbier (masculin) de raser tous les habitants masculins du village qui ne se rasent pas eux-mêmes et seulement ceux-ci. Le barbier, qui est un habitant du village, n'a pas pu respecter cette règle car : S'il se rase lui-même, il enfreint la règle, car le barbier ne peut raser que les hommes qui ne se rasent pas eux-mêmes ; S'il ne se rase pas lui-même , il est en tort également, car il a la charge de raser les hommes qui ne se rasent pas eux-mêmes. Cette règle est donc inapplicable. S'agit-il pour autant d'un paradoxe ? Il n'y a aucune raison de penser qu'un conseil de village ou toute autre instance ne puisse être à l'origine d'une loi absurde. De fait, loin d'être une antinomie logique, ce « paradoxe » montre qu'un barbier respectant cette règle ne peut pas exister. Il s'agit d'une illustration de ce que, si R est une relation binaire quelconque (en l'occurrence « ...rase... »), l'énoncé suivant, écrit en langage formel : ¬ ∃y ∀x (y R x ⇔ ¬ x R x) est une formule universellement valide du calcul des prédicats du premier ordre. On se reportera à l'article sur le paradoxe de Russell pour voir pourquoi cela peut conduire, dans le cas de la relation d'appartenance dans une théorie des ensembles trop naïve, à une antinomie, c’est-à-dire à une contradiction démontrée dans la théorie. Comme il s'applique en fait à n'importe quelle relation (binaire), on peut en donner, avec plus ou moins de bonheur, de multiples variantes. Citons celle-ci, due à Martin Gardner : est-il logiquement possible d'écrire un catalogue qui répertorie tous les catalogues ne se répertoriant pas eux-mêmes et seulement ceux-ci ? La réponse est non, puisque ce catalogue ne peut pas se répertorier, ni ne pas se répertorier.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.