Le paradoxe du barbier est une illustration à but didactique du paradoxe de Russell, attribuée à Bertrand Russell. Il ne faut donc pas donner une importance excessive à ce « paradoxe ». Par exemple, le logicien Evert Willem Beth qualifie ce paradoxe d'« antinomie prétendue » ou de « pseudo-antinomie ». On peut énoncer le paradoxe ainsi : Le conseil municipal d'un village vote un arrêté municipal qui enjoint à son barbier (masculin) de raser tous les habitants masculins du village qui ne se rasent pas eux-mêmes et seulement ceux-ci. Le barbier, qui est un habitant du village, n'a pas pu respecter cette règle car : S'il se rase lui-même, il enfreint la règle, car le barbier ne peut raser que les hommes qui ne se rasent pas eux-mêmes ; S'il ne se rase pas lui-même , il est en tort également, car il a la charge de raser les hommes qui ne se rasent pas eux-mêmes. Cette règle est donc inapplicable. S'agit-il pour autant d'un paradoxe ? Il n'y a aucune raison de penser qu'un conseil de village ou toute autre instance ne puisse être à l'origine d'une loi absurde. De fait, loin d'être une antinomie logique, ce « paradoxe » montre qu'un barbier respectant cette règle ne peut pas exister. Il s'agit d'une illustration de ce que, si R est une relation binaire quelconque (en l'occurrence « ...rase... »), l'énoncé suivant, écrit en langage formel : ¬ ∃y ∀x (y R x ⇔ ¬ x R x) est une formule universellement valide du calcul des prédicats du premier ordre. On se reportera à l'article sur le paradoxe de Russell pour voir pourquoi cela peut conduire, dans le cas de la relation d'appartenance dans une théorie des ensembles trop naïve, à une antinomie, c’est-à-dire à une contradiction démontrée dans la théorie. Comme il s'applique en fait à n'importe quelle relation (binaire), on peut en donner, avec plus ou moins de bonheur, de multiples variantes. Citons celle-ci, due à Martin Gardner : est-il logiquement possible d'écrire un catalogue qui répertorie tous les catalogues ne se répertoriant pas eux-mêmes et seulement ceux-ci ? La réponse est non, puisque ce catalogue ne peut pas se répertorier, ni ne pas se répertorier.