Concept

Barber paradox

The barber paradox is a puzzle derived from Russell's paradox. It was used by Bertrand Russell as an illustration of the paradox, though he attributes it to an unnamed person who suggested it to him. The puzzle shows that an apparently plausible scenario is logically impossible. Specifically, it describes a barber who is defined such that he both shaves himself and does not shave himself, which implies that no such barber exists. The barber is the "one who shaves all those, and those only, who do not shave themselves". The question is, does the barber shave himself? Any answer to this question results in a contradiction: The barber cannot shave himself, as he only shaves those who do not shave themselves. Thus, if he shaves himself he ceases to be the barber specified. Conversely, if the barber does not shave himself, then he fits into the group of people who would be shaved by the specified barber, and thus, as that barber, he must shave himself. In its original form, this paradox has no solution, as no such barber can exist. The question is a loaded question in that it assumes the existence of a barber who could not exist, which is a vacuous proposition, and hence false. There are other non-paradoxical variations, but those are different. This paradox is often incorrectly attributed to Bertrand Russell (e.g., by Martin Gardner in Aha!). It was suggested to Russell as an alternative form of Russell's paradox, which Russell had devised to show that set theory as it was used by Georg Cantor and Gottlob Frege contained contradictions. However, Russell denied that the Barber's paradox was an instance of his own: This point is elaborated further under Applied versions of Russell's paradox. This sentence says that a barber x exists. Its truth value is false, as the existential clause is unsatisfiable (a contradiction) because of the universal quantifier . The universally quantified y will include every single element in the domain, including our infamous barber x.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (1)
Paradoxes of set theory
This article contains a discussion of paradoxes of set theory. As with most mathematical paradoxes, they generally reveal surprising and counter-intuitive mathematical results, rather than actual logical contradictions within modern axiomatic set theory. Set theory as conceived by Georg Cantor assumes the existence of infinite sets. As this assumption cannot be proved from first principles it has been introduced into axiomatic set theory by the axiom of infinity, which asserts the existence of the set N of natural numbers.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.