Concept

Particle in a one-dimensional lattice

Summary
In quantum mechanics, the particle in a one-dimensional lattice is a problem that occurs in the model of a periodic crystal lattice. The potential is caused by ions in the periodic structure of the crystal creating an electromagnetic field so electrons are subject to a regular potential inside the lattice. It is a generalization of the free electron model, which assumes zero potential inside the lattice. When talking about solid materials, the discussion is mainly around crystals – periodic lattices. Here we will discuss a 1D lattice of positive ions. Assuming the spacing between two ions is a, the potential in the lattice will look something like this: The mathematical representation of the potential is a periodic function with a period a. According to Bloch's theorem, the wavefunction solution of the Schrödinger equation when the potential is periodic, can be written as: where u(x) is a periodic function which satisfies u(x + a) = u(x). It is the Bloch factor with Floquet exponent which gives rise to the band structure of the energy spectrum of the Schrödinger equation with a periodic potential like the Kronig–Penney potential or a cosine function as in the Mathieu equation. When nearing the edges of the lattice, there are problems with the boundary condition. Therefore, we can represent the ion lattice as a ring following the Born–von Karman boundary conditions. If L is the length of the lattice so that L ≫ a, then the number of ions in the lattice is so big, that when considering one ion, its surrounding is almost linear, and the wavefunction of the electron is unchanged. So now, instead of two boundary conditions we get one circular boundary condition: If N is the number of ions in the lattice, then we have the relation: aN = L. Replacing in the boundary condition and applying Bloch's theorem will result in a quantization for k: The Kronig–Penney model (named after Ralph Kronig and William Penney) is a simple, idealized quantum-mechanical system that consists of an infinite periodic array of rectangular potential barriers.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.