Résumé
En mécanique quantique, la particule dans réseau à une dimension est un problème apparaissant dans le modèle du réseau cristallin périodique. L'exemple-type de ce problème est le comportement des électrons dans un réseau cristallin périodique (métal, semi-conducteur ou isolant) qui subissent un potentiel régulier périodique provoqué par les ions formant la structure cristalline, et donc disposés de façon régulière. C'est une extension du modèle de l'électron libre, dans lequel on suppose que le potentiel est nul dans le réseau. Dans ce problème, on étudie les matériaux solides et en particulier les cristaux présentant un réseau cristallin périodique. Pour simplifier le problème, on se place dans un réseau à une dimension constitué par les cations du matériau, régulièrement espacés d'une distance a, paramètre du réseau. Le potentiel du réseau ressemble donc à une fonction périodique de période a : center Selon le théorème de Bloch, la fonction d'onde ψ(x) solution de l'équation de Schrödinger dans un tel système périodique satisfait la condition : et peut donc s'écrire sous la forme Où u(x) est la fonction périodique du cristal qui satisfait la condition : Pour éviter les problèmes de bord, on considère que le réseau est périodique aux limites c'est-à-dire qu'on considère qu'il forme une chaîne qui se boucle sur elle-même. Si L est la longueur du réseau, de telles sortes que L >> a, on a comme condition supplémentaire aux limites : Soit N, le nombre d'ions dans le réseau, on a donc la relation : aN = L. En appliquant les conditions aux limites et le théorème de Bloch, on trouve une quantification pour k, qui ne peut prendre pour valeurs que des multiples de 2π/L: Le modèle de Kronig-Penney, développé par Ralph Kronig et William Penney en 1931, est un modèle simple, idéalisé d'un système de mécanique quantique constitué d'une infinité de puits de quantiques, tous de la même taille a, séparés par des barrières de potentiel rectangulaires de largeur b et de hauteur V0, chaque « cellule » (puits + une barrière) ayant une longueur d (d=a+b).
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.