Concept

Tensor product bundle

In differential geometry, the tensor product of vector bundles E, F (over same space ) is a vector bundle, denoted by E ⊗ F, whose fiber over a point is the tensor product of vector spaces Ex ⊗ Fx. Example: If O is a trivial line bundle, then E ⊗ O = E for any E. Example: E ⊗ E ∗ is canonically isomorphic to the endomorphism bundle End(E), where E ∗ is the dual bundle of E. Example: A line bundle L has tensor inverse: in fact, L ⊗ L ∗ is (isomorphic to) a trivial bundle by the previous example, as End(L) is trivial. Thus, the set of the isomorphism classes of all line bundles on some topological space X forms an abelian group called the Picard group of X. One can also define a symmetric power and an exterior power of a vector bundle in a similar way. For example, a section of is a differential p-form and a section of is a differential p-form with values in a vector bundle E.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.