Concept

Tensor product bundle

In differential geometry, the tensor product of vector bundles E, F (over same space ) is a vector bundle, denoted by E ⊗ F, whose fiber over a point is the tensor product of vector spaces Ex ⊗ Fx. Example: If O is a trivial line bundle, then E ⊗ O = E for any E. Example: E ⊗ E ∗ is canonically isomorphic to the endomorphism bundle End(E), where E ∗ is the dual bundle of E. Example: A line bundle L has tensor inverse: in fact, L ⊗ L ∗ is (isomorphic to) a trivial bundle by the previous example, as End(L) is trivial. Thus, the set of the isomorphism classes of all line bundles on some topological space X forms an abelian group called the Picard group of X. One can also define a symmetric power and an exterior power of a vector bundle in a similar way. For example, a section of is a differential p-form and a section of is a differential p-form with values in a vector bundle E.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Séances de cours associées (1)
Tensor Produits et puissance symétrique
Couvre les produits tenseurs, la puissance symétrique et la puissance extérieure des espaces vectoriels, y compris les propriétés et les applications.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.