The term "thermal energy" is used loosely in various contexts in physics and engineering. It can refer to several different well-defined physical concepts. These include the internal energy or enthalpy of a body of matter and radiation; heat, defined as a type of energy transfer (as is thermodynamic work); and the characteristic energy of a degree of freedom, , in a system that is described in terms of its microscopic particulate constituents (where denotes temperature and denotes the Boltzmann constant).
In thermodynamics, heat is energy transferred to or from a thermodynamic system by mechanisms other than thermodynamic work or transfer of matter, such as conduction, radiation, and friction. Heat refers to a quantity transferred between systems, not to a property of any one system, or "contained" within it. On the other hand, internal energy and enthalpy are properties of a single system. Heat and work depend on the way in which an energy transfer occurred, whereas internal energy is a property of the state of a system and can thus be understood without knowing how the energy got there.
The internal energy of a body can change in a process in which chemical potential energy is converted into non-chemical energy. In such a process, the thermodynamic system can change its internal energy by doing work on its surroundings, or by gaining or losing energy as heat. It is not quite lucid to merely say that 'the converted chemical potential energy has simply become internal energy'. It is, however, convenient and more lucid to say that 'the chemical potential energy has been converted into thermal energy'. Such thermal energy may be viewed as a contributor to internal energy or to enthalpy, thinking of the contribution as a process without thinking that the contributed energy has become an identifiable component of the internal or enthalpic energies. The thermal energy is thus thought of as a 'process entity' rather than as an 'enduring physical entity'. This is expressed in ordinary traditional language by talking of 'heat of reaction'.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ce cours présente la thermodynamique en tant que théorie permettant une description d'un grand nombre de phénomènes importants en physique, chimie et ingéniere, et d'effets de transport. Une introduc
Le but du cours de Physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de pr
The course introduces the basic concepts of thermodynamics and heat transfer, and thermodynamic properties of matter and their calculation. The students will master the concepts of heat, mass, and mom
Temperature is a physical quantity that expresses quantitatively the perceptions of hotness and coldness. Temperature is measured with a thermometer. Thermometers are calibrated in various temperature scales that historically have relied on various reference points and thermometric substances for definition. The most common scales are the Celsius scale with the unit symbol °C (formerly called centigrade), the Fahrenheit scale (°F), and the Kelvin scale (K), the latter being used predominantly for scientific purposes.
In thermodynamics, heat is the thermal energy transferred between systems due to a temperature difference. In colloquial use, heat sometimes refers to thermal energy itself. An example of formal vs. informal usage may be obtained from the right-hand photo, in which the metal bar is "conducting heat" from its hot end to its cold end, but if the metal bar is considered a thermodynamic system, then the energy flowing within the metal bar is called internal energy, not heat.
Chemical energy is the energy of chemical substances that is released when the substances undergo a chemical reaction and transform into other substances. Some examples of storage media of chemical energy include batteries, food, and gasoline (as well as oxygen gas, which is of high chemical energy due to its relatively weak double bond and indispensable for chemical-energy release in gasoline combustion). Breaking and re-making chemical bonds involves energy, which may be either absorbed by or evolved from a chemical system.
Dense and polished samples are sometimes used to test the in vitro biological response of biomaterials. However, their production can be challenging, for example for α-tricalcium phosphate (α-TCP), a commonly-used bone graft substitute. In this particular ...
This paper establishes a mean-field equation set and an energy theorem to provide a theoretical basis in view of the development of self-consistent, physics-based turbulent transport models for mean-field transport codes. A rigorous averaging procedure ide ...
A new scintillator based fast -ion loss detector (FILD) system has been designed for the Wendelstein 7-X (W7X) stellarator. The mechanical design of the system is presented here along with engineering analyses of the system. This includes an assessment of ...