An and-inverter graph (AIG) is a directed, acyclic graph that represents a structural implementation of the logical functionality of a circuit or network. An AIG consists of two-input nodes representing logical conjunction, terminal nodes labeled with variable names, and edges optionally containing markers indicating logical negation. This representation of a logic function is rarely structurally efficient for large circuits, but is an efficient representation for manipulation of boolean functions. Typically, the abstract graph is represented as a data structure in software.
Conversion from the network of logic gates to AIGs is fast and scalable. It only requires that every gate be expressed in terms of AND gates and inverters. This conversion does not lead to unpredictable increase in memory use and runtime. This makes the AIG an efficient representation in comparison with either the binary decision diagram (BDD) or the "sum-of-product" (ΣoΠ) form, that is, the canonical form in Boolean algebra known as the disjunctive normal form (DNF). The BDD and DNF may also be viewed as circuits, but they involve formal constraints that deprive them of scalability. For example, ΣoΠs are circuits with at most two levels while BDDs are canonical, that is, they require that input variables be evaluated in the same order on all paths.
Circuits composed of simple gates, including AIGs, are an "ancient" research topic. The interest in AIGs started with Alan Turing's seminal 1948 paper on neural networks, in which he described a randomized trainable network of NAND gates. Interest continued through the late 1950s and continued in the 1970s when various local transformations have been developed. These transformations were implemented in several
logic synthesis and verification systems, such as Darringer et al. and Smith et al., which reduce circuits to improve area and delay during synthesis, or to speed up formal equivalence checking. Several important techniques were discovered early at IBM, such as combining and reusing multi-input logic expressions and subexpressions, now known as structural hashing.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In theoretical computer science, a circuit is a model of computation in which input values proceed through a sequence of gates, each of which computes a function. Circuits of this kind provide a generalization of Boolean circuits and a mathematical model for digital logic circuits. Circuits are defined by the gates they contain and the values the gates can produce. For example, the values in a Boolean circuit are boolean values, and the circuit includes conjunction, disjunction, and negation gates.
In mathematics and mathematical logic, Boolean algebra is a branch of algebra. It differs from elementary algebra in two ways. First, the values of the variables are the truth values true and false, usually denoted 1 and 0, whereas in elementary algebra the values of the variables are numbers. Second, Boolean algebra uses logical operators such as conjunction (and) denoted as ∧, disjunction (or) denoted as ∨, and the negation (not) denoted as ¬.
In mathematics, a Boolean function is a function whose arguments and result assume values from a two-element set (usually {true, false}, {0,1} or {-1,1}). Alternative names are switching function, used especially in older computer science literature, and truth function (or logical function), used in logic. Boolean functions are the subject of Boolean algebra and switching theory. A Boolean function takes the form , where is known as the Boolean domain and is a non-negative integer called the arity of the function.
Logic rewriting is a powerful optimization technique that replaces small sections of a Boolean network with better implementations. Typically, exact synthesis is used to compute optimum replacement on-the-fly, with possible support for Boolean don't cares. ...
2024
, , , ,
Individual transistors based on emerging reconfigurable nanotechnologies exhibit electrical conduction for both types of charge carriers. These transistors (referred to as Reconfigurable Field-Effect Transistors (RFETs)) enable dynamic reconfiguration to d ...
2022
,
Factored form is a powerful multi-level representation of a Boolean function that readily translates into an implementation of the function in CMOS technology. In particular, the number of literals in a factored form correlates strongly with the number of ...