In computer programming, an enumerated type (also called enumeration, enum, or factor in the R programming language, and a categorical variable in statistics) is a data type consisting of a set of named values called elements, members, enumeral, or enumerators of the type. The enumerator names are usually identifiers that behave as constants in the language. An enumerated type can be seen as a degenerate tagged union of unit type. A variable that has been declared as having an enumerated type can be assigned any of the enumerators as a value. In other words, an enumerated type has values that are different from each other, and that can be compared and assigned, but are not specified by the programmer as having any particular concrete representation in the computer's memory; compilers and interpreters can represent them arbitrarily. For example, the four suits in a deck of playing cards may be four enumerators named Club, Diamond, Heart, and Spade, belonging to an enumerated type named suit. If a variable V is declared having suit as its data type, one can assign any of those four values to it. Although the enumerators are usually distinct, some languages may allow the same enumerator to be listed twice in the type's declaration. The names of enumerators need not be semantically complete or compatible in any sense. For example, an enumerated type called color may be defined to consist of the enumerators Red, Green, Zebra, Missing, and Bacon. In some languages, the declaration of an enumerated type also intentionally defines an ordering of its members (High, Medium and Low priorities); in others, the enumerators are unordered (English, French, German and Spanish supported languages); in others still, an implicit ordering arises from the compiler concretely representing enumerators as integers. Some enumerator types may be built into the language. The Boolean type, for example is often a pre-defined enumeration of the values False and True. A unit type consisting of a single value may also be defined to represent null.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (13)
CS-320: Computer language processing
We teach the fundamental aspects of analyzing and interpreting computer languages, including the techniques to build compilers. You will build a working compiler from an elegant functional language in
ENG-270: Computational methods and tools
This course prepares students to use modern computational methods and tools for solving problems in engineering and science.
CS-119(c): Information, Computation, Communication
L'objectif de ce cours est d'introduire les étudiants à la pensée algorithmique, de les familiariser avec les fondamentaux de l'Informatique et de développer une première compétence en programmation (
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.