Atrial natriuretic peptide (ANP) or atrial natriuretic factor (ANF) is a natriuretic peptide hormone secreted from the cardiac atria that in humans is encoded by the NPPA gene. Natriuretic peptides (ANP, BNP, and CNP) are a family of hormone/paracrine factors that are structurally related. The main function of ANP is causing a reduction in expanded extracellular fluid (ECF) volume by increasing renal sodium excretion. ANP is synthesized and secreted by cardiac muscle cells in the walls of the atria in the heart. These cells contain volume receptors which respond to increased stretching of the atrial wall due to increased atrial blood volume.
Reduction of blood volume by ANP can result in secondary effects such as reduction of extracellular fluid (ECF) volume, improved cardiac ejection fraction with resultant improved organ perfusion, decreased blood pressure, and increased serum potassium. These effects may be blunted or negated by various counter-regulatory mechanisms operating concurrently on each of these secondary effects.
Brain natriuretic peptide (BNP) – a misnomer; it is secreted by cardiac muscle cells in the heart ventricles – is similar to ANP in its effect. It acts via the same receptors as ANP does, but with 10-fold lower affinity than ANP. The biological half-life of BNP, however, is twice as long as that of ANP, and that of NT-proBNP is even longer, making these peptides better choices than ANP for diagnostic blood testing.
A member of the natriuretic peptide gene family, NPPA encodes an important cardiac signaling molecule known as atrial natriuretic peptide/factor (ANP). ANP carries out endocrine functions of the heart. It acts as a diuretic by inhibiting sodium reabsorption in the kidneys. ANP also acts in the heart to prevent cardiac hypertrophy and to regulate vascular remodeling and energy metabolism. NPPA expression is varied throughout mammalian development into adulthood. Fetal expression of NPPA is associated with the formation of chamber myocardium, muscle cells of the atria and ventricles in the early developing heart.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Explores the regulation of the urinary system, including the role of vasa recta and ADH in water reabsorption, circulatory volume control, and blood pH stabilization.
Le but est de connaitre et comprendre le fonctionnement des systèmes cardiovasculaire, urinaire, respiratoire, digestif, ainsi que du métabolisme de base et sa régulation afin de déveloper une réflect
Assessment of kidney function occurs in different ways, using the presence of symptoms and signs, as well as measurements using urine tests, blood tests, and medical imaging. Functions of a healthy kidney include maintaining a person's fluid balance, maintaining an acid-base balance; regulating electrolytes including sodium, potassium, and other electrolytes; clearing toxins; regulating blood pressure; and regulating hormones, such as erythropoietin; and activation of vitamin D.
Vasodilation, also known as vasorelaxation, is the widening of blood vessels. It results from relaxation of smooth muscle cells within the vessel walls, in particular in the large veins, large arteries, and smaller arterioles. The process is the opposite of vasoconstriction, which is the narrowing of blood vessels. When blood vessels dilate, the flow of blood is increased due to a decrease in vascular resistance and increase in cardiac output. Therefore, dilation of arterial blood vessels (mainly the arterioles) decreases blood pressure.
Cyclic guanosine monophosphate (cGMP) is a cyclic nucleotide derived from guanosine triphosphate (GTP). cGMP acts as a second messenger much like cyclic AMP. Its most likely mechanism of action is activation of intracellular protein kinases in response to the binding of membrane-impermeable peptide hormones to the external cell surface. Through protein kinases activation, cGMP can relax smooth muscle. cGMP concentration in urine can be measured for kidney function and diabetes detection.
,
Amino acid availability is monitored by animals to adapt to their nutritional environment. Beyond gustatory receptors and systemic amino acid sensors, enteroendocrine cells (EECs) are believed to directly percept dietary amino acids and secrete regulatory ...
Nature Portfolio2024
,
The serine proteases CAP1/Prss8 and CAP3/St14 are identified as ENaC channel-activating proteases in vitro, highly suggesting that they are required for proteolytic activation of ENaC in vivo. The present study tested whether CAP3/St14 is relevant for rena ...
Basel2023
Aims: Given the logistical issues surrounding intramyocardial cell delivery, we sought to address the efficacy of the simpler, more accessible intracoronary route by re-evaluating REGENERATE-DCM and REGENERATE-IHD (autologous cell therapy trials for heart ...