Summary
Microinjection is the use of a glass micropipette to inject a liquid substance at a microscopic or borderline macroscopic level. The target is often a living cell but may also include intercellular space. Microinjection is a simple mechanical process usually involving an inverted microscope with a magnification power of around 200x (though sometimes it is performed using a dissecting stereo microscope at 40–50x or a traditional compound upright microscope at similar power to an inverted model). For processes such as cellular or pronuclear injection the target cell is positioned under the microscope and two micromanipulators—one holding the pipette and one holding a microcapillary needle usually between 0.5 and 5 μm in diameter (larger if injecting stem cells into an embryo)—are used to penetrate the cell membrane and/or the nuclear envelope. In this way the process can be used to introduce a vector into a single cell. Microinjection can also be used in the cloning of organisms, in the study of cell biology and viruses, and for treating male subfertility through intracytoplasmic sperm injection (ICSI, ˈɪksi ). The use of microinjection as a biological procedure began in the early twentieth century, although even through the 1970s it was not commonly used. By the 1990s, its use had escalated significantly and it is now considered a common laboratory technique, along with vesicle fusion, electroporation, chemical transfection, and viral transduction, for introducing a small amount of a substance into a small target. There are two basic types of microinjection systems. The first is called a constant flow system and the second is called a pulsed flow system. In a constant flow system, which is relatively simple and inexpensive though clumsy and outdated, a constant flow of a sample is delivered from a micropipette and the amount of the sample which is injected is determined by how long the needle remains in the cell. This system typically requires a regulated pressure source, a capillary holder, and either a coarse or a fine micromanipulator.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.