In mathematics, specifically ring theory, a left primitive ideal is the annihilator of a (nonzero) simple left module. A right primitive ideal is defined similarly. Left and right primitive ideals are always two-sided ideals.
Primitive ideals are prime. The quotient of a ring by a left primitive ideal is a left primitive ring. For commutative rings the primitive ideals are maximal, and so commutative primitive rings are all fields.
The primitive spectrum of a ring is a non-commutative analog of the prime spectrum of a commutative ring.
Let A be a ring and the set of all primitive ideals of A. Then there is a topology on , called the Jacobson topology, defined so that the closure of a subset T is the set of primitive ideals of A containing the intersection of elements of T.
Now, suppose A is an associative algebra over a field. Then, by definition, a primitive ideal is the kernel of an irreducible representation of A and thus there is a surjection
Example: the spectrum of a unital C*-algebra.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Study the basics of representation theory of groups and associative algebras.
In mathematics, a noncommutative ring is a ring whose multiplication is not commutative; that is, there exist a and b in the ring such that ab and ba are different. Equivalently, a noncommutative ring is a ring that is not a commutative ring. Noncommutative algebra is the part of ring theory devoted to study of properties of the noncommutative rings, including the properties that apply also to commutative rings. Sometimes the term noncommutative ring is used instead of ring to refer to an unspecified ring which is not necessarily commutative, and hence may be commutative.
Ring theory is the branch of mathematics in which rings are studied: that is, structures supporting both an addition and a multiplication operation. This is a glossary of some terms of the subject. For the items in commutative algebra (the theory of commutative rings), see glossary of commutative algebra. For ring-theoretic concepts in the language of modules, see also Glossary of module theory. For specific types of algebras, see also: Glossary of field theory and Glossary of Lie groups and Lie algebras.
In algebra, ring theory is the study of rings—algebraic structures in which addition and multiplication are defined and have similar properties to those operations defined for the integers. Ring theory studies the structure of rings, their representations, or, in different language, modules, special classes of rings (group rings, division rings, universal enveloping algebras), as well as an array of properties that proved to be of interest both within the theory itself and for its applications, such as homological properties and polynomial identities.
We study annihilating polynomials and annihilating ideals for elements of Witt rings for groups of exponent 2. With the help of these results and certain calculations involving the Clifford invariant, we are able to give full sets of generators for the ann ...
2010
Let K be a field with char(K) ≠ 2. The Witt-Grothendieck ring (K) and the Witt ring W (K) of K are both quotients of the group ring ℤ[𝓖(K)], where 𝓖(K) := K*/(K*)2 is the square class group of K. Since ℤ[𝓖(K)] is integra ...
In this article we prove that there exists a Dixmier map for nilpotent super Lie algebras. In other words, if we denote by Prim(U(g)) the set of (graded) primitive ideals of the enveloping algebra U(g) of a nilpotent Lie superalgebra g and Ad0 the adjoint ...