**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Annihilating Polynomials for Quadratic Forms

Abstract

Let K be a field with char(K) ≠ 2. The Witt-Grothendieck ring (K) and the Witt ring W (K) of K are both quotients of the group ring ℤ[𝓖(K)], where 𝓖(K) := K*/(K*)2 is the square class group of K. Since ℤ[𝓖(K)] is integral, the same holds for (K) and W(K). The subject of this thesis is the study of annihilating polynomials for quadratic forms. More specifically, for a given quadratic form φ over K, we study polynomials P ∈ ℤ[X] such that P([φ]) = 0 or P({φ}) = 0. Here [φ] ∈ (K) denotes the isometry class and {φ} ∈ W(K) denotes the equivalence class of φ. The subset of ℤ[X] consisting of all annihilating polynomials for [φ], respectively {φ}, is an ideal, which we call the annihilating ideal of [φ], respectively {φ}. Chapter 1 is dedicated to the algebraic foundations for the study of annihilating polynomials for quadratic forms. First we study the general structure of ideals in ℤ[X], which later on allows us to efficiently determine complete sets of generators for annihilating ideals. Then we introduce a more natural setting for the study of annihilating polynomials for quadratic forms, i.e. we define Witt rings for groups of exponent 2. Both (K) and W(K) are Witt rings for the square class group 𝓖(K). Studying annihilating polynomials in this more general setting relieves us to a certain extent from having to distinguish between isometry and equivalence classes of quadratic forms. In Section 1.1 we study the structure of ideals in R[X], where R is a principal ideal domain. For an ideal I ⊂ R[X] there exist sets of generators, which can be obtained in a natural way by considering the leading coefficients of elements in I. These sets of generators are called convenient. By discarding super uous elements we obtain modest sets of generators, which under certain assumptions are minimal sets of generators for I. Let G be a group of exponent 2. In Section 1.2 we study annihilating polynomials for elements of ℤ[G]. With the help of the ring homomorphisms Hom(ℤ[G],ℤ) it is possible to completely classify annihilating polynomials for elements of ℤ[G]. Note that an annihilating polynomial for an element f ∈ ℤ[G] also annihilates the image of f in any quotient of ℤ[G]. In particular, Witt rings for G are quotients of ℤ[G]. In Section 1.3 we use the ring homomorphisms Hom(ℤ[G],ℤ) to describe the prime spectrum of ℤ[G]. The obtained results can then be employed for the characterisation of the prime spectrum of a Witt ring R for G. Section 1.4 is dedicated to proving the structure theorems for Witt rings. More precisely, we generalise the structure theorems for Witt rings of fields to the general setting of Witt rings for groups of exponent 2. Section 1.5 serves to summarise Chapter 1. If R is a Witt ring for G, then we use the structure theorems to determine, for an element x ∈ R, the specific shape of convenient and modest sets of generators for the annihilating ideal of x. In Chapter 2 we study annihilating polynomials for quadratic forms over fields. More specifically, we first consider fields K, over which quadratic forms can be classified with the help of the classical invariants. Calculations involving these invariants allow us to classify annihilating ideals for isometry and equivalence classes of quadratic forms over K. Then we apply methods from the theory of generic splitting to study annihilating polynomials for excellent quadratic forms. Throughout Chapter 2 we make heavy usage of the results obtained in Chapter 1. Let K be a field with char(K) ≠ 2. Section 2.1 constitutes an introduction to the algebraic theory of quadratic forms over fields. We introduce the Witt-Grothendieck ring (K) and the Witt ring W(K), and we show that these are indeed Witt rings for 𝓖(K). In addition we adapt the structure theorems to the specific setting of quadratic forms. In Section 2.2 we introduce Brauer groups and quaternion algebras, and in Section 2.3 we define the first three cohomological invariants of quadratic forms. In particular we use quaternion algebras to define the Clifford invariant. In Section 2.4 we begin our actual study of annihilating polynomials for quadratic forms. Henceforth it becomes necessary to distinguish between isometry and equivalence classes of quadratic forms. We start by classifying annihilating ideals for quadratic forms over fields K, for which (K) and W(K) have a particularly simple structure. Subsequently we use calculations involving the first three cohomological invariants to determine annihilating ideals for quadratic forms over a field K such that I3(K) = {0}, where I(K) ⊂ W(K) is the fundamental ideal. Local fields, which are a special class of such fields, are studied in Section 2.5. By applying the Hasse-Minkowski Theorem we can then determine annihilating ideals of quadratic forms over global fields. Section 2.6 serves as an introduction to the elementary theory of generic splitting. In particular we introduce Pfister neighbours and excellent quadratic forms, which are the subjects of study in Section 2.7. We use methods from generic splitting to study annihilating polynomials for Pfister neighbours. The obtained result can be applied inductively to obtain annihilating polynomials for excellent quadratic forms. We conclude the section by giving an alternative, elementary approach to the study of annihilating polynomials for excellent forms, which makes use of the fact that (K) and W(K) are quotients of ℤ[𝓖(K)].

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts

Loading

Related publications

Loading

Related publications (8)

Loading

Loading

Loading

Related concepts (37)

Equivalence class

In mathematics, when the elements of some set S have a notion of equivalence (formalized as an equivalence relation), then one may naturally split the set S into equivalenc

Quadratic form

In mathematics, a quadratic form is a polynomial with terms all of degree two ("form" is another name for a homogeneous polynomial). For example,
4x^2 + 2xy - 3y^2
is a

Principal ideal domain

In mathematics, a principal ideal domain, or PID, is an integral domain in which every ideal is principal, i.e., can be generated by a single element. More generally, a principal ideal ring is a nonz

Let K be a field of characteristic different from 2. It is known that a quadratic Pfister form over K is hyperbolic once it is isotropic. It is also known that the dimension of an anisotropic quadratic form over K belonging to a given power of the fundamental ideal of the Witt ring of K is lower bounded. In this paper, weak analogues of these two statements are proved for hermitian forms over a multiquaternion algebra with involution. Consequences for Pfister involutions are also drawn. An invariant u(alpha) of K with respect to a nonzero pure quaternion of a quaternion division algebra over K is defined. Upper bounds for this invariant are provided. In particular an analogue is obtained of a result of Elman and Lam concerning the u-invariant of a field of level at most 2.

2008This thesis is concerned with the algebraic theory of hermitian forms. It is organized in two parts. The first, consisting of the first two chapters, deals with some descent properties of unimodular hermitian forms over central simple algebras with involution. The second, which consists of the last two chapters, generalizes several classical properties of unimodular hermitian forms over rings with involution to the setting of sesquilinear forms in hermitian categories. The original results established in this thesis are joint work with Professor Eva Bayer-Fluckiger. The first chapter contains an introduction to the algebraic theory of unimodular ε-hermitian forms over fields with involution. One knows that if L/K is an extension of odd degree (where char(K) ≠ 2) then the restriction map rL/K : W(K) →W(L) is injective. In addition, if the extension is purely inseparable then the map rL/K is bijective. In the second chapter we first introduce the basic notions and techniques of the theory of unimodular ε-hermitian forms over algebras with involution, in particular the technique of Morita equivalence. Let L/K be a finite field extension, τ an involution on L and A a finite-dimensional K-algebra endowed with an involution α such that αœK = τœK. E. Bayer-Fluckiger and H.W. Lenstra proved that if L/K is of odd degree and αœK = idK then the restriction map rL/Kε : Wε(A, α) → Wε(A ⊗K L, α ⊗ τ) is injective for any ε = ±1. This holds also if αœK ≠ idK. We prove that if, in addition, L/K is purely inseparable and A is a central simple K-algebra, then the above map is actually bijective. The proof proceeds via induction on the degree of the algebra and uses in an essential way an exact sequence of Witt groups due to R. Parimala, R. Sridharan and V. Suresh, later extended by N. Gernier-Boley and M.G. Mahmoudi. The third chapter contains a survey of the theory of hermitian and quadratic forms in hermitian categories. In particular, we cover the transfer between two hermitian categories, the reduction by an ideal, the transfer into the endomorphism ring of an object, as well as the Krull-Schmidt-Azumaya theorem and some of its applications. In the fourth chapter we prove, adapting the ideas developed by E. Bayer-Fluckiger and L. Fainsilber, that the category of sesquilinear forms in a hermitian category ℳ is equivalent to the category of unimodular hermitian forms in the category of double arrows of ℳ. In order to obtain this equivalence of categories we associate to a sesquilinear form the double arrow consisting of its two adjoints, equipped with a canonical unimodular hermitian form. This equivalence of categories allows us to define a notion of Witt group for sesquilinear forms in hermitian categories. This generalizes the classical notion of a Witt group of unimodular hermitian forms over rings with involution. Using the above equivalence of categories we deduce analogues of the Witt cancellation theorem and Springer's theorem for sesquilinear forms over certain algebras with involution. We also extend some finiteness results due to E. Bayer-Fluckiger, C. Kearton and S.M. J. Wilson. In addition, we study the weak Hasse-Minkowski principle for sesquilinear forms over skew fields with involution over global fields. We prove that this principle holds for systems of sesquilinear forms over a skew field over a global field and endowed with a unitary involution. Two systems of sesquilinear forms are hence isometric if and only if they are isometric over all the completions of the base field. This result has already been known for unimodular hermitian and skew-hermitian forms over rings with involution, under the same hypothesis. Finally, we study the behaviour of the Witt group of a linear hermitian category under extension of scalars. Let K be a field of characteristic different from 2, L a finite extension of K and ℳ a K-linear hermitian category. We define the extension of ℳ to L as being the category with the same objects as ℳ and with morphisms given by the morphisms of ℳ extended to L. We obtain an L-linear hermitian category, denoted by ℳL. The canonical functor of scalar extension ℛL/K : ℳ → ℳL induces for any ε = ±1 a group homomorphism Wε(ℳ) →Wε(ℳL). We prove that if all the idempotents of the category ℳ split and the extension L/K is of odd degree then this homomorphism is injective. This result has already been known in the case when ℳ is the category of finite-dimensional K-vector spaces.

This thesis deals with the study of G-forms and particulary the trace form of a G-Galois algebra. Let k be a field of characteristic not two. Let G be a finite group and L a G-Galois algebra over k. We define the trace form qL by qL(x, y) = TrL/k(xy) for all x, y in L. This is a bilinear symmetric form which is G-invariant. In other words, qL is a G-form. We know that L has a self-dual normal basis if and only if the trace form qL is G-isomorphic to the unit G-form q0. This is an important reason to classify the trace forms. This work contains two different parts. In the first part, we study G-forms in general, putting a ring structure on their Witt group. We then proved an analogue of Pfister's theorem - i.e. there is no zero divisor of odd dimension - when k[G] is semi-simple, k is big enough and G is abelian. Counter-examples are given when these conditions are not fulfilled. In the second part of this thesis, we study the trace form qL of a G-Galois algebra. E. Bayer-Fluckiger and H. W. Lenstra proved that if G is of odd order, then qL is always G-isomorphic to the unit form. If G is of even order, this is no longer the case. However, if the field k is of cohomological 2-dimension less than or equal to 1, then E. Bayer-Fluckiger and J.-P. Serre gave a necessary and sufficient condition - in terms of cohomological invariants - for the trace form qL to be isomorphic to the unit form. M. Monsurrò generalized this result to fields of virtual cohomological 2-dimension equal to 1. However, in higher cohomological dimensions, it becomes very difficult to classify the trace form itself. But it is possible to give general results if we consider multiples of the trace form or more generally the product of the trace form by a quadratic form. E. Bayer-Fluckiger formulated 2 conjectures about the possibility of finding a complete system of invariants for such a product when the quadratic form lies in a certain ideal of the Witt ring of k depending on the cohomological dimension of the field. In this work, we prove the first conjecture for all cohomological dimensions and the second one for a field of cohomological 2-dimension equal to 2. A more general conjecture is proved including the fields of virtual cohomological 2-dimension equal to 2. Finally, the second conjecture of E. Bayer-Fluckiger is proved in all cohomological dimensions, but only when either the characteristic of k is non zero or the group G is abelian or a 2-group, or k is big enough.