Concept

Glossary of Riemannian and metric geometry

This is a glossary of some terms used in Riemannian geometry and metric geometry — it doesn't cover the terminology of differential topology. The following articles may also be useful; they either contain specialised vocabulary or provide more detailed expositions of the definitions given below. Connection Curvature Metric space Riemannian manifold See also: Glossary of general topology Glossary of differential geometry and topology List of differential geometry topics Unless stated otherwise, letters X, Y, Z below denote metric spaces, M, N denote Riemannian manifolds, |xy| or denotes the distance between points x and y in X. Italic word denotes a self-reference to this glossary. A caveat: many terms in Riemannian and metric geometry, such as convex function, convex set and others, do not have exactly the same meaning as in general mathematical usage. NOTOC Alexandrov space a generalization of Riemannian manifolds with upper, lower or integral curvature bounds (the last one works only in dimension 2) Almost flat manifold Arc-wise isometry the same as path isometry. Autoparallel the same as totally geodesic Barycenter, see center of mass. bi-Lipschitz map. A map is called bi-Lipschitz if there are positive constants c and C such that for any x and y in X Busemann function given a ray, γ : [0, ∞)→X, the Busemann function is defined by Cartan–Hadamard theorem is the statement that a connected, simply connected complete Riemannian manifold with non-positive sectional curvature is diffeomorphic to Rn via the exponential map; for metric spaces, the statement that a connected, simply connected complete geodesic metric space with non-positive curvature in the sense of Alexandrov is a (globally) CAT(0) space. Cartan extended Einstein's General relativity to Einstein–Cartan theory, using Riemannian-Cartan geometry instead of Riemannian geometry. This extension provides affine torsion, which allows for non-symmetric curvature tensors and the incorporation of spin–orbit coupling. Center of mass.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.