Corner detection is an approach used within computer vision systems to extract certain kinds of features and infer the contents of an image. Corner detection is frequently used in motion detection, , video tracking, image mosaicing, panorama stitching, 3D reconstruction and object recognition. Corner detection overlaps with the topic of interest point detection.
A corner can be defined as the intersection of two edges. A corner can also be defined as a point for which there are two dominant and different edge directions in a local neighbourhood of the point.
An interest point is a point in an image which has a well-defined position and can be robustly detected. This means that an interest point can be a corner but it can also be, for example, an isolated point of local intensity maximum or minimum, line endings, or a point on a curve where the curvature is locally maximal.
In practice, most so-called corner detection methods detect interest points in general, and in fact, the term "corner" and "interest point" are used more or less interchangeably through the literature. As a consequence, if only corners are to be detected it is necessary to do a local analysis of detected interest points to determine which of these are real corners. Examples of edge detection that can be used with post-processing to detect corners are the Kirsch operator and the Frei-Chen masking set.
"Corner", "interest point" and "feature" are used interchangeably in literature, confusing the issue. Specifically, there are several blob detectors that can be referred to as "interest point operators", but which are sometimes erroneously referred to as "corner detectors". Moreover, there exists a notion of ridge detection to capture the presence of elongated objects.
Corner detectors are not usually very robust and often require large redundancies introduced to prevent the effect of individual errors from dominating the recognition task.
One determination of the quality of a corner detector is its ability to detect the same corner in multiple similar images, under conditions of different lighting, translation, rotation and other transforms.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In computer vision and , a feature is a piece of information about the content of an image; typically about whether a certain region of the image has certain properties. Features may be specific structures in the image such as points, edges or objects. Features may also be the result of a general neighborhood operation or feature detection applied to the image. Other examples of features are related to motion in image sequences, or to shapes defined in terms of curves or boundaries between different image regions.
In computer vision, blob detection methods are aimed at detecting regions in a that differ in properties, such as brightness or color, compared to surrounding regions. Informally, a blob is a region of an image in which some properties are constant or approximately constant; all the points in a blob can be considered in some sense to be similar to each other. The most common method for blob detection is convolution.
The scale-invariant feature transform (SIFT) is a computer vision algorithm to detect, describe, and match local features in images, invented by David Lowe in 1999. Applications include object recognition, robotic mapping and navigation, , 3D modeling, gesture recognition, video tracking, individual identification of wildlife and match moving. SIFT keypoints of objects are first extracted from a set of reference images and stored in a database.
These lab sessions are designed as a practical companion to the course "Image Analysis and Pattern Recognition" by Prof. Thiran. The main objective is to learn how to use some important image processi
The course will cover different aspects of multimodal processing (complementarity vs redundancy; alignment and synchrony; fusion), with an emphasis on the analysis of people, behaviors and interaction
Delves into the mathematical foundations and importance of directional cues in image processing, exploring computational challenges and selectivity to orientation.
Effective Prognostics and Health Management (PHM) relies on accurate prediction of the Remaining Useful Life (RUL). Data-driven RUL prediction techniques rely heavily on the representativeness of the available time-to-failure trajectories. Therefore, these ...
Cancer is among the leading causes of death worldwide, and as knowledge of the disease continues to grow there is an increasing interest towards precision medicine: more specifically towards the theranostics field, i.e the development of targeted molecular ...
EPFL2024
, ,
Prediction is a vital component of motion planning for autonomous vehicles (AVs). By reasoning about the possible behavior of other target agents, the ego vehicle (EV) can navigate safely, efficiently, and politely. However, most of the existing work overl ...