Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
Mengjie Zhao holds degrees in Computational Mechanics (MSc) with honors track and in Engineering Science (BSc) from the Technical University of Munich (TUM).
From the early years of her studies, Mengjie was fascinated by the modeling of multiphysics and multiscale systems. As a student research assistant at TUM and research intern at International Centre for Numerical Methods in Engineering (CIMNE), she gained a solid understanding of both the theoretical and algorithmic fundamentals as well as a wide range of applications. Through the BGCE project with the Elitenetzwerk Bayern (ENB), which dealt with the mesh sensitivity prediction with a deep neural network, she realized that leveraging data could bring physical modeling far beyond the current computational limits. Later, in her master's thesis in cooperation with Siemens, she turned to the reduced-order modeling with enforced physical invariants, which showed better accuracy and generality.
In her Ph.D., she would like to step towards a further combination of deductive research (modeling and simulation) and inductive (data-driven) research by embedding physics into machine learning.
Veuillez noter qu'il ne s'agit pas d'une liste complète des publications de cette personne. Elle inclut uniquement les travaux sémantiquement pertinents. Pour une liste complète, veuillez consulter Infoscience.
Olga Fink, Ismail Nejjar, Mengjie Zhao
Olga Fink, Mengjie Zhao, Keivan Faghih Niresi
Boi Faltings, Mengjie Zhao, Fei Mi, Liangwei Chen