Summary
Sequential pattern mining is a topic of data mining concerned with finding statistically relevant patterns between data examples where the values are delivered in a sequence. It is usually presumed that the values are discrete, and thus time series mining is closely related, but usually considered a different activity. Sequential pattern mining is a special case of structured data mining. There are several key traditional computational problems addressed within this field. These include building efficient databases and indexes for sequence information, extracting the frequently occurring patterns, comparing sequences for similarity, and recovering missing sequence members. In general, sequence mining problems can be classified as string mining which is typically based on string processing algorithms and itemset mining which is typically based on association rule learning. Local process models extend sequential pattern mining to more complex patterns that can include (exclusive) choices, loops, and concurrency constructs in addition to the sequential ordering construct. String mining typically deals with a limited alphabet for items that appear in a sequence, but the sequence itself may be typically very long. Examples of an alphabet can be those in the ASCII character set used in natural language text, nucleotide bases 'A', 'G', 'C' and 'T' in DNA sequences, or amino acids for protein sequences. In biology applications analysis of the arrangement of the alphabet in strings can be used to examine gene and protein sequences to determine their properties. Knowing the sequence of letters of a DNA or a protein is not an ultimate goal in itself. Rather, the major task is to understand the sequence, in terms of its structure and biological function. This is typically achieved first by identifying individual regions or structural units within each sequence and then assigning a function to each structural unit. In many cases this requires comparing a given sequence with previously studied ones.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.