In the history of cryptography, the "System 97 Typewriter for European Characters" (九七式欧文印字機 kyūnana-shiki ōbun injiki) or "Type B Cipher Machine", codenamed Purple by the United States, was an encryption machine used by the Japanese Foreign Office from February 1939 to the end of World War II. The machine was an electromechanical device that used stepping-switches to encrypt the most sensitive diplomatic traffic. All messages were written in the 26-letter English alphabet, which was commonly used for telegraphy. Any Japanese text had to be transliterated or coded. The 26-letters were separated using a plug board into two groups, of six and twenty letters respectively. The letters in the sixes group were scrambled using a 6 × 25 substitution table, while letters in the twenties group were more thoroughly scrambled using three successive 20 × 25 substitution tables.
The cipher codenamed "Purple" replaced the Type A Red machine previously used by the Japanese Foreign Office. The sixes and twenties division was familiar to U.S. Army Signals Intelligence Service (SIS) cryptographers from their work on the Type A cipher and it allowed them to make early progress on the sixes portion of messages. The twenties cipher proved much more difficult, but a breakthrough in September 1940 allowed the Army cryptographers to construct a machine that duplicated the behavior (was an analog) of the Japanese machines, even though no one in the U.S. had any description of one.
The Japanese also used stepping-switches in systems, codenamed Coral and Jade, that did not divide their alphabets. American forces referred to information gained from decryptions as Magic.
The Imperial Japanese Navy did not cooperate with the Army in pre-war cipher machine development, and that lack of cooperation continued into World War II. The Navy believed the Purple machine was sufficiently difficult to break that it did not attempt to revise it to improve security. This seems to have been on the advice of a mathematician, Teiji Takagi, who lacked a background in cryptanalysis.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Cryptography, the use of codes and ciphers to protect secrets, began thousands of years ago. Until recent decades, it has been the story of what might be called classical cryptography — that is, of methods of encryption that use pen and paper, or perhaps simple mechanical aids. In the early 20th century, the invention of complex mechanical and electromechanical machines, such as the Enigma rotor machine, provided more sophisticated and efficient means of encryption; and the subsequent introduction of electronics and computing has allowed elaborate schemes of still greater complexity, most of which are entirely unsuited to pen and paper.
Reverse engineering (also known as backwards engineering or back engineering) is a process or method through which one attempts to understand through deductive reasoning how a previously made device, process, system, or piece of software accomplishes a task with very little (if any) insight into exactly how it does so. It is essentially the process of opening up or dissecting a system to see how it works, in order to duplicate or enhance it.
adopted by British military intelligence in June 1941 for wartime signals intelligence obtained by breaking high-level encrypted enemy radio and teleprinter communications at the Government Code and Cypher School (GC&CS) at Bletchley Park. Ultra eventually became the standard designation among the western Allies for all such intelligence. The name arose because the intelligence obtained was considered more important than that designated by the highest British security classification then used (Most Secret) and so was regarded as being Ultra Secret.