Locomotion in space includes all actions or methods used to move one's body in microgravity conditions through the outer space environment. Locomotion in these conditions is different from locomotion in a gravitational field. There are many factors that contribute to these differences, and they are crucial when researching long-term survival of humans in space. Humans have evolved in a 1-G environment and are therefore accustomed to Earth's standard atmospheric conditions, and the microgravity environment of space can have huge effects on the human body and its locomotion. The environmental conditions in space are harsh and require extensive equipment for survival and completion of daily activities. There are many environmental factors to consider both inside and outside of a spacecraft that astronauts work in. These factors include but are not limited to movement during weightlessness, general equipment necessary to travel to the desired destination in space, and gear such as space suits that hinder mobility. When doing extravehicular activities (EVA), it is important to be protected from the vacuum of space. Exposure to this harsh environment can cause death in a small amount of time. The main environmental factors of concern in space include but are not limited to the following : lack of oxygen extreme pressure and temperature differences higher radiation levels Effect of spaceflight on the human body There are many detrimental effects of extended exposure to reduced gravity that are similar to aging and disease. Some long-duration effects of reduced gravity can be simulated on Earth using bed rest. These effects are discussed below in general but more detailed information can be found on the page "Effect of spaceflight on the human body." The various effects include: muscle atrophy deconditioning (e.g.