Video camera tubes were devices based on the cathode ray tube that were used in television cameras to capture television images, prior to the introduction of charge-coupled device (CCD) in the 1980s. Several different types of tubes were in use from the early 1930s, and as late as the 1990s.
In these tubes, an electron beam was scanned across an image of the scene to be broadcast focused on a target. This generated a current that was dependent on the brightness of the image on the target at the scan point. The size of the striking ray was tiny compared to the size of the target, allowing 480–486 horizontal scan lines per image in the NTSC format, 576 lines in PAL, and as many as 1035 lines in Hi-Vision.
Cathode-ray tube
Any vacuum tube which operates using a focused beam of electrons, originally called cathode rays, is known as a cathode ray tube (CRT). These are usually seen as display devices as used in older (i.e., non-flat panel) television receivers and computer displays. The camera pickup tubes described in this article are also CRTs, but they display no image.
In June 1908, the scientific journal Nature published a letter in which Alan Archibald Campbell-Swinton, fellow of the Royal Society (UK), discussed how a fully electronic television system could be realized by using cathode ray tubes (or "Braun" tubes, after their inventor, Karl Braun) as both imaging and display devices. He noted that the "real difficulties lie in devising an efficient transmitter", and that it was possible that "no photoelectric phenomenon at present known will provide what is required". A cathode ray tube was successfully demonstrated as a displaying device by the German Professor Max Dieckmann in 1906; his experimental results were published by the journal Scientific American in 1909. Campbell-Swinton later expanded on his vision in a presidential address given to the Röntgen Society in November 1911. The photoelectric screen in the proposed transmitting device was a mosaic of isolated rubidium cubes.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The course presents the detection of ionizing radiation in the keV and MeV energy ranges. Physical processes of radiation/matter interaction are introduced. All steps of detection are covered, as well
Ce cours d'introduction à la microscopie a pour but de donner un apperçu des différentes techniques d'analyse de la microstructure et de la composition des matériaux, en particulier celles liées aux m
An image sensor or imager is a sensor that detects and conveys information used to form an . It does so by converting the variable attenuation of light waves (as they pass through or reflect off objects) into signals, small bursts of current that convey the information. The waves can be light or other electromagnetic radiation. Image sensors are used in electronic imaging devices of both analog and digital types, which include digital cameras, camera modules, camera phones, optical mouse devices, medical imaging equipment, night vision equipment such as thermal imaging devices, radar, sonar, and others.
The National Aeronautics and Space Administration (NASA ˈnæsə) is an independent agency of the U.S. federal government responsible for the civil space program, aeronautics research, and space research. Established in 1958, NASA succeeded the National Advisory Committee for Aeronautics (NACA) to give the U.S. space development effort a distinctly civilian orientation, emphasizing peaceful applications in space science.
An active-pixel sensor (APS) is an , which was invented by Peter J.W. Noble in 1968, where each pixel sensor unit cell has a photodetector (typically a pinned photodiode) and one or more active transistors. In a metal–oxide–semiconductor (MOS) active-pixel sensor, MOS field-effect transistors (MOSFETs) are used as amplifiers. There are different types of APS, including the early NMOS APS and the now much more common complementary MOS (CMOS) APS, also known as the CMOS sensor.
The heat transfer performance of commercially produced micro-enhanced tubes with and without a nanocoating was investigated under pool boiling of saturated refrigerant. These multiscale enhancements were on the outside of 19 mm horizontal copper tubes heat ...
Oxford2023
, , , , , ,
The emergence of the coronavirus 2019 (COVID-19) arose the need for rapid, accurate and massive virus detection methods to control the spread of infectious diseases. In this work, a device, deployable in non-medical environments, has been developed for the ...
2022
, , , , ,
Single-photon avalanche diode (SPAD) based sensors and systems enable a variety of applications in biomedical, automotive, consumer, and security domains. While several established standard technologies, which can facilitate the design of SPAD-based system ...