In physics and physical chemistry, time-resolved spectroscopy is the study of dynamic processes in materials or chemical compounds by means of spectroscopic techniques. Most often, processes are studied after the illumination of a material occurs, but in principle, the technique can be applied to any process that leads to a change in properties of a material. With the help of pulsed lasers, it is possible to study processes that occur on time scales as short as 10−16 seconds. All time-resolved spectra are suitable to be analyzed using the two-dimensional correlation method for a correlation map between the peaks.
Flash photolysis Ultrafast laser spectroscopy
Transient-absorption spectroscopy (TAS), also known as flash photolysis, is an extension of absorption spectroscopy. Ultrafast transient absorption spectroscopy, an example of non-linear spectroscopy, measures changes in the absorbance/transmittance in the sample. Here, the absorbance at a particular wavelength or range of wavelengths of a sample is measured as a function of time after excitation by a flash of light. In a typical experiment, both the light for excitation ('pump') and the light for measuring the absorbance ('probe') are generated by a pulsed laser. If the process under study is slow, then the time resolution can be obtained with a continuous (i.e., not pulsed) probe beam and repeated conventional spectrophotometric techniques.
Time-resolved absorption spectroscopy relies on our ability to resolve two physical actions in real time. The shorter the detection time, the better the resolution. This leads to the idea that femtosecond laser based spectroscopy offers better resolution than nano-second laser based spectroscopy.
In a typical experimental set up, a pump pulse excites the sample and later, a delayed probe pulse strikes the sample. In order to maintain the maximum spectral distribution, two pulses are derived from the same source. The impact of the probe pulse on the sample is recorded and analyzed with wavelength/ time to study the dynamics of the excited state.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course addresses the principles governing the interactions between light and biological tissue, their optical properties and basic concepts of radiometry. Illustrative diagnostic and therapeutic
The course will cover fundamental concepts and recent developments in the field of ultrafast spectroscopy and introduce the basic theory to understand ultrafast (10-16 - 10-9 s) phenomena in chemistry
The first MOOC to teach the basics of plasma physics and its main applications: fusion energy, astrophysical and space plasmas, societal and industrial applications
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
A review is given of the advances in femtochem. and their importance in the study of biol. systems. These advances include the multidimensional vibrational spectroscopies and the time-resolved structural techniques. [on SciFinder (R)] ...
N,O-Diacetyl-2-amino-1-arylethanol can be efficiently resolved by horse liver esterase (HLE). A remarkable org. co-solvent effect on the enantioselectivity of HLE was obsd. [on SciFinder (R)] ...