Many branches of mathematics study objects of a given type and prove a classification theorem. A common theme is that the classification results in a number of series of objects and a finite number of exceptions — often with desirable properties — that do not fit into any series. These are known as exceptional objects. In many cases, these exceptional objects play a further and important role in the subject. Furthermore, the exceptional objects in one branch of mathematics often relate to the exceptional objects in others.
A related phenomenon is exceptional isomorphism, when two series are in general different, but agree for some small values. For example, spin groups in low dimensions are isomorphic to other classical Lie groups.
Regular polytope
The prototypical examples of exceptional objects arise in the classification of regular polytopes: in two dimensions, there is a series of regular n-gons for n ≥ 3. In every dimension above 2, one can find analogues of the cube, tetrahedron and octahedron. In three dimensions, one finds two more regular polyhedra — the dodecahedron (12-hedron) and the icosahedron (20-hedron) — making five Platonic solids. In four dimensions, a total of six regular polytopes exist, including the 120-cell, the 600-cell and the 24-cell. There are no other regular polytopes, as the only regular polytopes in higher dimensions are of the hypercube, simplex, orthoplex series. In all dimensions combined, there are therefore three series and five exceptional polytopes.
Moreover, the pattern is similar if non-convex polytopes are included: in two dimensions, there is a regular star polygon for every rational number . In three dimensions, there are four Kepler–Poinsot polyhedra, and in four dimensions, ten Schläfli–Hess polychora; in higher dimensions, there are no non-convex regular figures.
These can be generalized to tessellations of other spaces, especially uniform tessellations, notably tilings of Euclidean space (honeycombs), which have exceptional objects, and tilings of hyperbolic space.