Accelerations in special relativity (SR) follow, as in Newtonian Mechanics, by differentiation of velocity with respect to time. Because of the Lorentz transformation and time dilation, the concepts of time and distance become more complex, which also leads to more complex definitions of "acceleration". SR as the theory of flat Minkowski spacetime remains valid in the presence of accelerations, because general relativity (GR) is only required when there is curvature of spacetime caused by the energy–momentum tensor (which is mainly determined by mass). However, since the amount of spacetime curvature is not particularly high on Earth or its vicinity, SR remains valid for most practical purposes, such as experiments in particle accelerators.
One can derive transformation formulas for ordinary accelerations in three spatial dimensions (three-acceleration or coordinate acceleration) as measured in an external inertial frame of reference, as well as for the special case of proper acceleration measured by a comoving accelerometer. Another useful formalism is four-acceleration, as its components can be connected in different inertial frames by a Lorentz transformation. Also equations of motion can be formulated which connect acceleration and force. Equations for several forms of acceleration of bodies and their curved world lines follow from these formulas by integration. Well known special cases are hyperbolic motion for constant longitudinal proper acceleration or uniform circular motion. Eventually, it is also possible to describe these phenomena in accelerated frames in the context of special relativity, see Proper reference frame (flat spacetime). In such frames, effects arise which are analogous to homogeneous gravitational fields, which have some formal similarities to the real, inhomogeneous gravitational fields of curved spacetime in general relativity. In the case of hyperbolic motion one can use Rindler coordinates, in the case of uniform circular motion one can use Born coordinates.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Le but du cours de Physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de pr
This course is the basic introduction to modern cosmology. It introduces students to the main concepts and formalism of cosmology, the observational status of Hot Big Bang theory
and discusses major
Rindler coordinates are a coordinate system used in the context of special relativity to describe the hyperbolic acceleration of a uniformly accelerating reference frame in flat spacetime. In relativistic physics the coordinates of a hyperbolically accelerated reference frame constitute an important and useful coordinate chart representing part of flat Minkowski spacetime. In special relativity, a uniformly accelerating particle undergoes hyperbolic motion, for which a uniformly accelerating frame of reference in which it is at rest can be chosen as its proper reference frame.
Hyperbolic motion is the motion of an object with constant proper acceleration in special relativity. It is called hyperbolic motion because the equation describing the path of the object through spacetime is a hyperbola, as can be seen when graphed on a Minkowski diagram whose coordinates represent a suitable inertial (non-accelerated) frame. This motion has several interesting features, among them that it is possible to outrun a photon if given a sufficient head start, as may be concluded from the diagram.
Bell's spaceship paradox is a thought experiment in special relativity. It was first described by E. Dewan and M. Beran in 1959 but became more widely known after John Stewart Bell elaborated the idea further in 1976. A delicate thread hangs between two spaceships headed in the same direction. They start accelerating simultaneously and equally as measured in the inertial frame S, thus having the same velocity at all times as viewed from S.
The non-dimensional energy of starting vortex rings typically converges to values around 0.33 when they are created by a piston-cylinder or a bluff body translating at a constant speed. To explore the limits of the universality of this value and to analyse ...
Acceleration measurements are fundamental in applications such as consumer electronics, navigation, automotive safety and Internet of things (IoT). In comparison with capacitive or piezoresistive MEMS accelerometers, resonant graphene accelerometers have t ...
In this article we study the so-called water tank system. In this system, the behavior of water contained in a 1-D tank is modelled by Saint-Venant equations, with a scalar distributed control. It is well-known that the linearized systems around uniform st ...