Bell's spaceship paradox is a thought experiment in special relativity. It was first described by E. Dewan and M. Beran in 1959 but became more widely known after John Stewart Bell elaborated the idea further in 1976. A delicate thread hangs between two spaceships headed in the same direction. They start accelerating simultaneously and equally as measured in the inertial frame S, thus having the same velocity at all times as viewed from S. Therefore, they are all subject to the same Lorentz contraction, so the entire assembly seems to be equally contracted in the S frame with respect to the length at the start. At first sight, it might appear that the thread will not break during acceleration.
This argument, however, is incorrect as shown by Dewan and Beran, and later Bell. The distance between the spaceships does not undergo Lorentz contraction with respect to the distance at the start, because in S, it is effectively defined to remain the same, due to the equal and simultaneous acceleration of both spaceships in S. It also turns out that the rest length between the two has increased in the frames in which they are momentarily at rest (S′), because the accelerations of the spaceships are not simultaneous here due to relativity of simultaneity. The thread, on the other hand, being a physical object held together by electrostatic forces, maintains the same rest length. Thus, in frame S, it must be Lorentz contracted, which result can also be derived when the electromagnetic fields of bodies in motion are considered. So, calculations made in both frames show that the thread will break; in S′ due to the non-simultaneous acceleration and the increasing distance between the spaceships, and in S due to length contraction of the thread.
In the following, the rest length or proper length of an object is its length measured in the object's rest frame. (This length corresponds to the proper distance between two events in the special case, when these events are measured simultaneously at the endpoints in the object's rest frame.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course is an introduction to the non-perturbative bootstrap approach to Conformal Field Theory and to the Gauge/Gravity duality, emphasizing the fruitful interplay between these two ideas.
The ladder paradox (or barn-pole paradox) is a thought experiment in special relativity. It involves a ladder, parallel to the ground, travelling horizontally at relativistic speed (near the speed of light) and therefore undergoing a Lorentz length contraction. The ladder is imagined passing through the open front and rear doors of a garage or barn which is shorter than its rest length, so if the ladder was not moving it would not be able to fit inside.
The Ehrenfest paradox concerns the rotation of a "rigid" disc in the theory of relativity. In its original 1909 formulation as presented by Paul Ehrenfest in relation to the concept of Born rigidity within special relativity, it discusses an ideally rigid cylinder that is made to rotate about its axis of symmetry. The radius R as seen in the laboratory frame is always perpendicular to its motion and should therefore be equal to its value R0 when stationary.
Born rigidity is a concept in special relativity. It is one answer to the question of what, in special relativity, corresponds to the rigid body of non-relativistic classical mechanics. The concept was introduced by Max Born (1909), who gave a detailed description of the case of constant proper acceleration which he called hyperbolic motion. When subsequent authors such as Paul Ehrenfest (1909) tried to incorporate rotational motions as well, it became clear that Born rigidity is a very restrictive sense of rigidity, leading to the Herglotz–Noether theorem, according to which there are severe restrictions on rotational Born rigid motions.
Explores Lorentz invariance, covering velocities, time dilation, and length contraction, with implications for symmetries and physical interpretations.
In this paper, we consider sigma-delta (SD) quantization of geometrically uniform (GU) finite frames. In the first part, we prove that under some conditions, the variant I and II permutation modulation (PM) codes, first introduced by Slepian (1968, 1965), ...
Background and Aim:Drumming requires excellent motor control and temporal coordination. Deploying specific muscle activation patterns may help achieve these requirements. Muscle activation patterns that involve reciprocal contraction of antagonist muscles ...
In the rod and hole paradox as described by Rindler (1961 Am. J. Phys. 29 365–6) ('length contraction paradox'), a rigid rod moves at high speed over a table towards a hole of the same size. A bystander expects the rod to fall into the hole, but a co-movin ...