Concept

Regular space

Summary
In topology and related fields of mathematics, a topological space X is called a regular space if every closed subset C of X and a point p not contained in C admit non-overlapping open neighborhoods. Thus p and C can be separated by neighborhoods. This condition is known as Axiom T3. The term "T3 space" usually means "a regular Hausdorff space". These conditions are examples of separation axioms. A topological space X is a regular space if, given any closed set F and any point x that does not belong to F, there exists a neighbourhood U of x and a neighbourhood V of F that are disjoint. Concisely put, it must be possible to separate x and F with disjoint neighborhoods. A or is a topological space that is both regular and a Hausdorff space. (A Hausdorff space or T2 space is a topological space in which any two distinct points are separated by neighbourhoods.) It turns out that a space is T3 if and only if it is both regular and T0. (A T0 or Kolmogorov space is a topological space in which any two distinct points are topologically distinguishable, i.e., for every pair of distinct points, at least one of them has an open neighborhood not containing the other.) Indeed, if a space is Hausdorff then it is T0, and each T0 regular space is Hausdorff: given two distinct points, at least one of them misses the closure of the other one, so (by regularity) there exist disjoint neighborhoods separating one point from (the closure of) the other. Although the definitions presented here for "regular" and "T3" are not uncommon, there is significant variation in the literature: some authors switch the definitions of "regular" and "T3" as they are used here, or use both terms interchangeably. This article uses the term "regular" freely, but will usually say "regular Hausdorff", which is unambiguous, instead of the less precise "T3". For more on this issue, see History of the separation axioms. A is a topological space where every point has an open neighbourhood that is regular. Every regular space is locally regular, but the converse is not true.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related publications (12)