A residual-current device (RCD), residual-current circuit breaker (RCCB) or ground fault circuit interrupter (GFCI) is an electrical safety device that quickly breaks an electrical circuit with leakage current to ground. It is to protect equipment and to reduce the risk of serious harm from an ongoing electric shock. Injury may still occur in some cases, for example if a human receives a brief shock before the electrical circuit is isolated, falls after receiving a shock, or if the person touches both conductors at the same time.
If the RCD device has additional overcurrent protection integrated in the same device, it is referred to as RCBO. An earth leakage circuit breaker may be an RCD, although an older type of voltage-operated earth leakage circuit breaker (ELCB) also exists.
These electrical wiring devices are designed to quickly and automatically isolate a circuit when it detects that the electric current is unbalanced between the supply and return conductors of a circuit. Any difference between the currents in these conductors indicates leakage current, which presents a shock hazard. Alternating 60 Hz current above 20 mA (0.020 amperes) through the human body is potentially sufficient to cause cardiac arrest or serious harm if it persists for more than a small fraction of a second. RCDs are designed to disconnect the conducting wires ("trip") quickly enough to potentially prevent serious injury to humans, and to prevent damage to electrical devices.
RCDs are testable and resettable devices—a test button safely creates a small leakage condition, and another button resets the conductors after a fault condition has been cleared. Some RCDs disconnect both the energized and return conductors upon a fault (double pole), while a single pole RCD only disconnects the energized conductor. If the fault has left the return wire "floating" or not at its expected ground potential for any reason, then a single-pole RCD will leave this conductor still connected to the circuit when it detects the fault.
File:Residual current device 2pole.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Le cours a pour objectif de présenter les éléments principaux relatifs à la conception et l¿exploitation des réseaux électriques de distribution (moyenne et basse tension) tout en tenant compte de la
Ce cours décrit les composants d'un réseau électrique. Il explique le fonctionnement des réseaux électriques et leurs limites d'utilisation. Il introduit les outils de base permettant de les piloter.
La première partie du cours décrit les méthodes classiques de synthèse asymétrique. La seconde partie du cours traite des stratégies de rétrosynthèse basées sur l'approche par disconnection.
Découvrez les circuits électriques linéaires. Apprenez à les maîtriser et à les résoudre, dans un premier temps en régime continu puis en régime alternatif.
Découvrez les circuits électriques linéaires. Apprenez à les maîtriser et à les résoudre, dans un premier temps en régime continu puis en régime alternatif.
An earthing system (UK and IEC) or grounding system (US) connects specific parts of an electric power system with the ground, typically the Earth's conductive surface, for safety and functional purposes. The choice of earthing system can affect the safety and electromagnetic compatibility of the installation. Regulations for earthing systems vary among countries, though most follow the recommendations of the International Electrotechnical Commission (IEC).
A circuit breaker is an electrical safety device designed to protect an electrical circuit from damage caused by overcurrent. Its basic function is to interrupt current flow to protect equipment and to prevent the risk of fire. Unlike a fuse, which operates once and then must be replaced, a circuit breaker can be reset (either manually or automatically) to resume normal operation. Circuit breakers are made in varying sizes, from small devices that protect low-current circuits or individual household appliances, to large switchgear designed to protect high voltage circuits feeding an entire city.
A split-phase or single-phase three-wire system is a type of single-phase electric power distribution. It is the alternating current (AC) equivalent of the original Edison Machine Works three-wire direct-current system. Its primary advantage is that, for a given capacity of a distribution system, it saves conductor material over a single-ended single-phase system, while only requiring a single phase on the supply side of the distribution transformer. This system is common in North America for residential and light commercial applications.
Offshore wind farms (OWFs) with modular multilevel converter high-voltage dc (MMC-HVdc) have become an important form of renewable energy utilization. However, if a fault occurs at the tie line between the MMC and the OWF, the fault steady-state current at ...
Piscataway2024
, , , ,
In this paper, we present the characteristics of current, electric fields and modeling approaches of lightning M-component mode of charge transfer. We consider both the classical M-components (occurring after return strokes) and M-component-type ICC (Initi ...
2023
, , ,
The need of full transposition of the current carrying elements (strands) in large cables is frequently retained as top design criterion for conductors operating in pulsed mode. However, when the transposition error, i.e., the inductance difference among t ...