In computing, an input–output memory management unit (IOMMU) is a memory management unit (MMU) connecting a direct-memory-access–capable (DMA-capable) I/O bus to the main memory. Like a traditional MMU, which translates CPU-visible virtual addresses to physical addresses, the IOMMU maps device-visible virtual addresses (also called device addresses or memory mapped I/O addresses in this context) to physical addresses. Some units also provide memory protection from faulty or malicious devices.
An example IOMMU is the graphics address remapping table (GART) used by AGP and PCI Express graphics cards on Intel Architecture and AMD computers.
On the x86 architecture, prior to splitting the functionality of northbridge and southbridge between the CPU and Platform Controller Hub (PCH), I/O virtualization was not performed by the CPU but instead by the chipset.
The advantages of having an IOMMU, compared to direct physical addressing of the memory (DMA), include:
Large regions of memory can be allocated without the need to be contiguous in physical memory - the IOMMU maps contiguous virtual addresses to the underlying fragmented physical addresses. Thus, the use of vectored I/O (scatter-gather lists) can sometimes be avoided.
Devices that do not support memory addresses long enough to address the entire physical memory can still address the entire memory through the IOMMU, avoiding overheads associated with copying buffers to and from the peripheral's addressable memory space.
For example, x86 computers can address more than 4 gigabytes of memory with the Physical Address Extension (PAE) feature in an x86 processor. Still, an ordinary 32-bit PCI device simply cannot address the memory above the 4 GiB boundary, and thus it cannot directly access it. Without an IOMMU, the operating system would have to implement time-consuming bounce buffers (also known as double buffers).
Memory is protected from malicious devices that are attempting DMA attacks and faulty devices that are attempting errant memory transfers because a device cannot read or write to memory that has not been explicitly allocated (mapped) for it.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
L'étudiant comprendra les architectures des systèmes embarqués microprogrammés, les architectures des microprocesseurs, hiérarchie de mémoire et les différents périphériques de Entrée/Sortie (E/S) inc
During the course, we cover the design of multi-core embedded systems running Linux on an FPGA. Students learn how to develop hardware-software co-design solutions for complex tasks using high-level s
This course will teach operating systems and networks in an integrated fashion,emphasising the fundamental concepts and techniques that make their interaction possible/practical. Core lectures will be
Memory protection is a way to control memory access rights on a computer, and is a part of most modern instruction set architectures and operating systems. The main purpose of memory protection is to prevent a process from accessing memory that has not been allocated to it. This prevents a bug or malware within a process from affecting other processes, or the operating system itself. Protection may encompass all accesses to a specified area of memory, write accesses, or attempts to execute the contents of the area.
ARM (stylised in lowercase as arm, formerly an acronym for Advanced RISC Machines and originally Acorn RISC Machine) is a family of reduced instruction set computer (RISC) instruction set architectures for computer processors, configured for various environments. Arm Ltd. develops the architectures and licenses them to other companies, who design their own products that implement one or more of those architectures, including system on a chip (SoC) and system on module (SOM) designs, that incorporate different components such as memory, interfaces, and radios.
In computer architecture, 64-bit integers, memory addresses, or other data units are those that are 64 bits wide. Also, 64-bit CPUs and ALUs are those that are based on processor registers, address buses, or data buses of that size. A computer that uses such a processor is a 64-bit computer. From the software perspective, 64-bit computing means the use of machine code with 64-bit virtual memory addresses.
Driven by the demand for real-time processing and the need to minimize latency in AI algorithms, edge computing has experienced remarkable progress. Decision-making AI applications stand out for their heavy reliance on data-centric operations, predominantl ...
EPFL2024
, , ,
Most modern in-memory online transaction processing (OLTP) engines rely on multi-version concurrency control (MVCC) to provide data consistency guarantees in the presence of conflicting data accesses. MVCC improves concurrency by generating a new version o ...
Virtual Memory (VM) is a critical programming abstraction that is widely used in various modern computing platforms. With the rise of datacenter computing and birth of planet-scale online services, the semantic and capacity requirements from memory have ev ...