The interchange instability, also known as the Kruskal–Schwarzchild instability or flute instability, is a type of plasma instability seen in magnetic fusion energy that is driven by the gradients in the magnetic pressure in areas where the confining magnetic field is curved. The name of the instability refers to the action of the plasma changing position with the magnetic field lines (i.e. an interchange of the lines of force in space) without significant disturbance to the geometry of the external field. The instability causes flute-like structures to appear on the surface of the plasma, hence it is also referred to as the flute instability. The interchange instability is a key issue in the field of fusion energy, where magnetic fields are used to confine a plasma in a volume surrounded by the field. The basic concept was first noted in a 1954 paper by Martin David Kruskal and Martin Schwarzschild, which demonstrated that a situation similar to the Rayleigh–Taylor instability in classic fluids existed in magnetically confined plasmas. The problem can occur anywhere where the magnetic field is concave with the plasma on the inside of the curve. Edward Teller gave a talk on the issue at a meeting later that year, pointing out that it appeared to be an issue in most of the fusion devices being studied at that time. He used the analogy of rubber bands on the outside of a blob of jelly; there is a natural tendency for the bands to snap together and eject the jelly from the center. Most machines of that era suffered from other instabilities that were far more powerful, and whether or not the interchange instability was taking place could not be confirmed. This was finally demonstrated beyond doubt by a Soviet magnetic mirror machine during an international meeting in 1961. When the US delegation stated they were not seeing this problem in their mirrors, it was pointed out they were making an error in the use of their instrumentation. When that was considered, it was clear the US experiments were also being affected by the same problem.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (3)
PHYS-423: Plasma I
Following an introduction of the main plasma properties, the fundamental concepts of the fluid and kinetic theory of plasmas are introduced. Applications concerning laboratory, space, and astrophysica
PHYS-325: Introduction to plasma physics
Introduction à la physique des plasmas destinée à donner une vue globale des propriétés essentielles et uniques d'un plasma et à présenter les approches couramment utilisées pour modéliser son comport
PHYS-424: Plasma II
This course completes the knowledge in plasma physics that students have acquired in the previous two courses, with a discussion of different applications, in the fields of magnetic confinement and co
Related lectures (21)
Plasma Instabilities: Microinstabilities in Magnetized Plasmas
Explores plasma instabilities in magnetized plasmas, focusing on kinetic effects and wave-particle interactions.
Microinstabilities: Drift Wave and ITG
Explores drift wave and ITG instabilities in fusion devices, analyzing dispersion relations and growth rates.
Microinstabilities in Magnetized Plasmas
Explores microinstabilities in magnetized plasmas, focusing on turbulence and transport limitations in fusion reactors.
Show more
Related publications (314)

Progress in the development of the ITER baseline scenario in TCV

Olivier Sauter, Stefano Coda, Benoît Labit, Alessandro Pau, Alexander Karpushov, Antoine Pierre Emmanuel Alexis Merle, Oleg Krutkin, Cassandre Ekta Contré, Reinart Andreas J. Coosemans, Stefano Marchioni, Yann Camenen, Matteo Vallar, Filippo Bagnato, Simon Van Mulders

Under the auspices of EUROfusion, the ITER baseline (IBL) scenario has been jointly investigated on AUG and TCV in the past years and this paper reports on the developments on TCV. It is found that the performance of TCV IBL is mainly limited by (neoclassi ...
2024

Benign termination of runaway electron beams on ASDEX Upgrade and TCV

Basil Duval, Stefano Coda, Joan Decker, Umar Sheikh, Claudia Colandrea, Luke Simons, Jean Arthur Cazabonne, Bernhard Sieglin, Gergely Papp

This paper discusses the development of a benign termination scenario for runaway electron (RE) beams on ASDEX Upgrade and TCV. A systematic study revealed that a low electron density (n e) companion plasma was required to achieve a large MHD instability, ...
Bristol2024

Full-F turbulent simulation in a linear plasma device using a gyro-moment approach

Paolo Ricci, Baptiste Jimmy Frei

Simulations of plasma turbulence in a linear plasma device configuration are presented. These simulations are based on a simplified version of the gyrokinetic (GK) model proposed by Frei et al. [J. Plasma Phys. 86, 905860205 (2020)], where the full-F distr ...
Melville2024
Show more
Related MOOCs (7)
Plasma Physics and Applications [retired]
The first MOOC to teach the basics of plasma physics and its main applications: fusion energy, astrophysical and space plasmas, societal and industrial applications
Plasma Physics and Applications
The first MOOC to teach the basics of plasma physics and its main applications: fusion energy, astrophysical and space plasmas, societal and industrial applications
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.