The interchange instability, also known as the Kruskal–Schwarzchild instability or flute instability, is a type of plasma instability seen in magnetic fusion energy that is driven by the gradients in the magnetic pressure in areas where the confining magnetic field is curved. The name of the instability refers to the action of the plasma changing position with the magnetic field lines (i.e. an interchange of the lines of force in space) without significant disturbance to the geometry of the external field. The instability causes flute-like structures to appear on the surface of the plasma, hence it is also referred to as the flute instability. The interchange instability is a key issue in the field of fusion energy, where magnetic fields are used to confine a plasma in a volume surrounded by the field. The basic concept was first noted in a 1954 paper by Martin David Kruskal and Martin Schwarzschild, which demonstrated that a situation similar to the Rayleigh–Taylor instability in classic fluids existed in magnetically confined plasmas. The problem can occur anywhere where the magnetic field is concave with the plasma on the inside of the curve. Edward Teller gave a talk on the issue at a meeting later that year, pointing out that it appeared to be an issue in most of the fusion devices being studied at that time. He used the analogy of rubber bands on the outside of a blob of jelly; there is a natural tendency for the bands to snap together and eject the jelly from the center. Most machines of that era suffered from other instabilities that were far more powerful, and whether or not the interchange instability was taking place could not be confirmed. This was finally demonstrated beyond doubt by a Soviet magnetic mirror machine during an international meeting in 1961. When the US delegation stated they were not seeing this problem in their mirrors, it was pointed out they were making an error in the use of their instrumentation. When that was considered, it was clear the US experiments were also being affected by the same problem.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées (32)

Progress in the development of the ITER baseline scenario in TCV

Olivier Sauter, Stefano Coda, Benoît Labit, Alessandro Pau, Alexander Karpushov, Antoine Pierre Emmanuel Alexis Merle, Oleg Krutkin, Cassandre Ekta Contré, Reinart Andreas J. Coosemans, Yann Camenen, Matteo Vallar, Filippo Bagnato, Simon Van Mulders, Stefano Marchioni

Under the auspices of EUROfusion, the ITER baseline (IBL) scenario has been jointly investigated on AUG and TCV in the past years and this paper reports on the developments on TCV. It is found that the performance of TCV IBL is mainly limited by (neoclassi ...
2024

Benign termination of runaway electron beams on ASDEX Upgrade and TCV

Basil Duval, Stefano Coda, Joan Decker, Umar Sheikh, Luke Simons, Claudia Colandrea, Jean Arthur Cazabonne, Bernhard Sieglin, Gergely Papp

This paper discusses the development of a benign termination scenario for runaway electron (RE) beams on ASDEX Upgrade and TCV. A systematic study revealed that a low electron density (n e) companion plasma was required to achieve a large MHD instability, ...
Bristol2024

Full-F turbulent simulation in a linear plasma device using a gyro-moment approach

Paolo Ricci, Baptiste Jimmy Frei

Simulations of plasma turbulence in a linear plasma device configuration are presented. These simulations are based on a simplified version of the gyrokinetic (GK) model proposed by Frei et al. [J. Plasma Phys. 86, 905860205 (2020)], where the full-F distr ...
Melville2024
Afficher plus
MOOCs associés (7)
Plasma Physics and Applications [retired]
The first MOOC to teach the basics of plasma physics and its main applications: fusion energy, astrophysical and space plasmas, societal and industrial applications
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.