In mathematics, specifically in class theories, the axiom of global choice is a stronger variant of the axiom of choice that applies to proper classes of sets as well as sets of sets. Informally it states that one can simultaneously choose an element from every non-empty set.
The axiom of global choice states that there is a global choice function τ, meaning a function such that for every non-empty set z, τ(z) is an element of z.
The axiom of global choice cannot be stated directly in the language of Zermelo–Fraenkel set theory (ZF) with the axiom of choice (AC), known as ZFC, as the choice function τ is a proper class and in ZFC one cannot quantify over classes. It can be stated by adding a new function symbol τ to the language of ZFC, with the property that τ is a global choice function. This is a conservative extension of ZFC: every provable statement of this extended theory that can be stated in the language of ZFC is already provable in ZFC . Alternatively, Gödel showed that given the axiom of constructibility one can write down an explicit (though somewhat complicated) choice function τ in the language of ZFC, so in some sense the axiom of constructibility implies global choice (in fact, [ZFC proves that] in the language extended by the unary function symbol τ, the axiom of constructibility implies that if τ is said explicitly definable function, then this τ is a global choice function. And then global choice morally holds, with τ as a witness).
In the language of von Neumann–Bernays–Gödel set theory (NBG) and Morse–Kelley set theory, the axiom of global choice can be stated directly , and is equivalent to various other statements:
Every class of nonempty sets has a choice function.
V \ {∅} has a choice function (where V is the class of all sets).
There is a well-ordering of V.
There is a bijection between V and the class of all ordinal numbers.
In von Neumann–Bernays–Gödel set theory, global choice does not add any consequence about sets (not proper classes) beyond what could have been deduced from the ordinary axiom of choice.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In set theory, Zermelo–Fraenkel set theory, named after mathematicians Ernst Zermelo and Abraham Fraenkel, is an axiomatic system that was proposed in the early twentieth century in order to formulate a theory of sets free of paradoxes such as Russell's paradox. Today, Zermelo–Fraenkel set theory, with the historically controversial axiom of choice (AC) included, is the standard form of axiomatic set theory and as such is the most common foundation of mathematics.
Supramolecular hydrogels based on chitosan and monoaldehydes are biomaterials with high potential for a multitude of bioapplications. This is due to the proper choice of the monoaldehyde that can tune the hydrogel properties for specific practices. In this ...
MDPI2022
, , ,
Since the 70s, there has been a growing interest in activity-based modelling. This approach models the need to travel as a result of performing daily activities (Bowman and Ben-Akiva, 2001). Nevertheless, the activities need to be scheduled which involves ...
2022
, , ,
Machine learning promises to accelerate materials discovery by allowing computational efficient property predictions from a small number of reference calculations. As a result, the literature has spent a considerable effort in designing representations tha ...
2019
Set Theory as a foundational system for mathematics. ZF, ZFC and ZF with atoms. Relative consistency of the Axiom of Choice, the Continuum Hypothesis, the reals as a countable union of countable sets,
Discrete choice models allow for the analysis and prediction of individuals' choice behavior. The objective of the course is to introduce both methodological and applied aspects, in the field of marke
Explores the existence of mathematical objects, truth of propositions, and knowledge about them, covering Platonism, Intuitionism, Structuralism, Nominalism, Logicism, and Formalism.