In topology, an Alexandrov topology is a topology in which the intersection of every family of open sets is open. It is an axiom of topology that the intersection of every finite family of open sets is open; in Alexandrov topologies the finite restriction is dropped.
A set together with an Alexandrov topology is known as an Alexandrov-discrete space or finitely generated space.
Alexandrov topologies are uniquely determined by their specialization preorders. Indeed, given any preorder ≤ on a set X, there is a unique Alexandrov topology on X for which the specialization preorder is ≤. The open sets are just the upper sets with respect to ≤. Thus, Alexandrov topologies on X are in one-to-one correspondence with preorders on X.
Alexandrov-discrete spaces are also called finitely generated spaces since their topology is uniquely determined by the family of all finite subspaces. Alexandrov-discrete spaces can thus be viewed as a generalization of finite topological spaces.
Due to the fact that commute with arbitrary unions and intersections, the property of being an Alexandrov-discrete space is preserved under quotients.
Alexandrov-discrete spaces are named after the Russian topologist Pavel Alexandrov. They should not be confused with the more geometrical Alexandrov spaces introduced by the Russian mathematician Aleksandr Danilovich Aleksandrov.
Alexandrov topologies have numerous characterizations. Let X = be a topological space. Then the following are equivalent:
Open and closed set characterizations:
Open set. An arbitrary intersection of open sets in X is open.
Closed set. An arbitrary union of closed sets in X is closed.
Neighbourhood characterizations:
Smallest neighbourhood. Every point of X has a smallest neighbourhood.
Neighbourhood filter. The neighbourhood filter of every point in X is closed under arbitrary intersections.
Interior and closure algebraic characterizations:
Interior operator. The interior operator of X distributes over arbitrary intersections of subsets.
Closure operator.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics, a finite topological space is a topological space for which the underlying point set is finite. That is, it is a topological space which has only finitely many elements. Finite topological spaces are often used to provide examples of interesting phenomena or counterexamples to plausible sounding conjectures. William Thurston has called the study of finite topologies in this sense "an oddball topic that can lend good insight to a variety of questions". Let be a finite set.
This is a glossary of some terms used in the branch of mathematics known as topology. Although there is no absolute distinction between different areas of topology, the focus here is on general topology. The following definitions are also fundamental to algebraic topology, differential topology and geometric topology. All spaces in this glossary are assumed to be topological spaces unless stated otherwise. Absolutely closed See H-closed Accessible See . Accumulation point See limit point.
In the branch of mathematics known as topology, the specialization (or canonical) preorder is a natural preorder on the set of the points of a topological space. For most spaces that are considered in practice, namely for all those that satisfy the T0 separation axiom, this preorder is even a partial order (called the specialization order). On the other hand, for T1 spaces the order becomes trivial and is of little interest. The specialization order is often considered in applications in computer science, where T0 spaces occur in denotational semantics.
This course will provide an introduction to model category theory, which is an abstract framework for generalizing homotopy theory beyond topological spaces and continuous maps. We will study numerous
Covers the concepts of limits and colimits in the category of Topological Spaces, emphasizing the relationship between colimit and limit constructions and adjunctions.
Functional data are typically modeled as sample paths of smooth stochastic processes in order to mitigate the fact that they are often observed discretely and noisily, occasionally irregularly and sparsely. The smoothness assumption is imposed to allow for ...
Modular robotics link the reliability of a centralised system with the adaptivity of a decentralised system. It is difficult for a robot with a fixed shape to be able to perform many different types of tasks. As the task space grows, the number of function ...
EPFL2024
, , , ,
Decentralized learning (DL) has gained prominence for its potential benefits in terms of scalability, privacy, and fault tolerance. It consists of many nodes that coordinate without a central server and exchange millions of parameters in the inherently ite ...