Amylopectin ˌæmᵻloʊˈpɛktᵻn is a water-insoluble polysaccharide and highly branched polymer of α-glucose units found in plants. It is one of the two components of starch, the other being amylose.
Plants store starch within specialized organelles called amyloplasts. To generate energy, the plant hydrolyzes the starch, releasing the glucose subunits. Humans and other animals that eat plant foods also use amylase, an enzyme that assists in breaking down amylopectin, to initiate the hydrolyzation of starch.
Starch is made of about 70–80% amylopectin by weight, though it varies depending on the source. For example, it ranges from lower percent content in long-grain rice, amylomaize, and russet potatoes to 100% in glutinous rice, waxy potato starch, and waxy corn. Amylopectin is highly branched, being formed of 2,000 to 200,000 glucose units. Its inner chains are formed of 20–24 glucose subunits.
Dissolved amylopectin starch has a lower tendency of retrogradation (a partial recrystallization after cooking—a part of the staling process) during storage and cooling. For this main reason, the waxy starches are used in different applications mainly as a thickening agent or stabilizer.
Amylopectin is a key component in the crystallization of starch’s final configuration, accounting for 70-80% of the final mass. Composed of α-glucose, it is formed in plants as a primary measure of energy storage in tandem with this structural metric.
Amylopectin bears a straight/linear chain along with a number of side chains which may be branched further. Glucose units are linked in a linear way with α(1→4) Glycosidic bonds. Branching usually occurs at intervals of 25 residues. At the places of origin of a side chain, the branching that takes place bears an α(1→6) glycosidic bond, resulting in a soluble molecule that can be quickly degraded as it has many end points onto which enzymes can attach. Wolform and Thompson (1956) have also reported α(1→3)linkages in case of Amylopectin.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The course will deliver basic knowledge on the principles of food fermentation and enzyme technology. The course will also present benefits that food biotechnology can bring in terms of Nutrition & He
Maltose (ˈmɔːltoʊs or ˈmɔːltoʊz), also known as maltobiose or malt sugar, is a disaccharide formed from two units of glucose joined with an α(1→4) bond. In the isomer isomaltose, the two glucose molecules are joined with an α(1→6) bond. Maltose is the two-unit member of the amylose homologous series, the key structural motif of starch. When beta-amylase breaks down starch, it removes two glucose units at a time, producing maltose. An example of this reaction is found in germinating seeds, which is why it was named after malt.
Waxy potato starch is a variety of commercially available starch composed almost entirely of amylopectin molecules, extracted from new potato varieties. Standard starch extracted from traditional potato varieties contains both amylose and amylopectin. Waxy potato starch, when gelatinized, has a clearer film, a stickier paste and retrogradates (thickening of starch film or paste during storage) less compared to regular potato starch. Waxy potato starch derivatives are used in textile sizing and food applications.
Amylose is a polysaccharide made of α-D-glucose units, bonded to each other through α(1→4) glycosidic bonds. It is one of the two components of starch, making up approximately 20–30%. Because of its tightly packed helical structure, amylose is more resistant to digestion than other starch molecules and is therefore an important form of resistant starch. Amylose is made up of α(1→4) bound glucose molecules. The carbon atoms on glucose are numbered, starting at the aldehyde (C=O) carbon, so, in amylose, the 1-carbon on one glucose molecule is linked to the 4-carbon on the next glucose molecule (α(1→4) bonds).
Discusses the inclusion of fermented foods in global food guides, exploring their benefits and risks, enzyme kinetics, and the history of food enzymes.
All cells need to be able to sense their environment, and adapt their metabolism, growth and cell division appropriately. In this study, I examined the response of Schizosaccharomyces pombe to a change in the carbon source and how that affects cytokinesis. ...
All cells need to be able to sense their environment, and adapt their metabolism, growth and cell division appropriately. In this study, I examined the response of Schizosaccharomyces pombe to a change in the carbon source and how that affects cytokinesis. ...
This paper reports the results of an international benchmark exercise on the measurement of fibre bed compaction behaviour. The aim was to identify aspects of the test method critical to obtain reliable results and to arrive at a recommended test procedure ...