In control theory, Ackermann's formula is a control system design method for solving the pole allocation problem for invariant-time systems by Jürgen Ackermann. One of the primary problems in control system design is the creation of controllers that will change the dynamics of a system by changing the eigenvalues of the matrix representing the dynamics of the closed-loop system. This is equivalent to changing the poles of the associated transfer function in the case that there is no cancellation of poles and zeros. Consider a linear continuous-time invariant system with a state-space representation where x is the state vector, u is the input vector, and A, B and C are matrices of compatible dimensions that represent the dynamics of the system. An input-output description of this system is given by the transfer function Since the denominator of the right equation is given by the characteristic polynomial of A, the poles of G are eigenvalues of A (note that the converse is not necessarily true, since there may be cancellations between terms of the numerator and the denominator). If the system is unstable, or has a slow response or any other characteristic that does not specify the design criteria, it could be advantageous to make changes to it. The matrices A, B and C, however, may represent physical parameters of a system that cannot be altered. Thus, one approach to this problem might be to create a feedback loop with a gain K that will feed the state variable x into the input u. If the system is controllable, there is always an input such that any state can be transferred to any other state . With that in mind, a feedback loop can be added to the system with the control input , such that the new dynamics of the system will be In this new realization, the poles will be dependent on the characteristic polynomial of , that is Computing the characteristic polynomial and choosing a suitable feedback matrix can be a challenging task, especially in larger systems. One way to make computations easier is through Ackermann's formula.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.