In control theory, Ackermann's formula is a control system design method for solving the pole allocation problem for invariant-time systems by Jürgen Ackermann. One of the primary problems in control system design is the creation of controllers that will change the dynamics of a system by changing the eigenvalues of the matrix representing the dynamics of the closed-loop system. This is equivalent to changing the poles of the associated transfer function in the case that there is no cancellation of poles and zeros. Consider a linear continuous-time invariant system with a state-space representation where x is the state vector, u is the input vector, and A, B and C are matrices of compatible dimensions that represent the dynamics of the system. An input-output description of this system is given by the transfer function Since the denominator of the right equation is given by the characteristic polynomial of A, the poles of G are eigenvalues of A (note that the converse is not necessarily true, since there may be cancellations between terms of the numerator and the denominator). If the system is unstable, or has a slow response or any other characteristic that does not specify the design criteria, it could be advantageous to make changes to it. The matrices A, B and C, however, may represent physical parameters of a system that cannot be altered. Thus, one approach to this problem might be to create a feedback loop with a gain K that will feed the state variable x into the input u. If the system is controllable, there is always an input such that any state can be transferred to any other state . With that in mind, a feedback loop can be added to the system with the control input , such that the new dynamics of the system will be In this new realization, the poles will be dependent on the characteristic polynomial of , that is Computing the characteristic polynomial and choosing a suitable feedback matrix can be a challenging task, especially in larger systems. One way to make computations easier is through Ackermann's formula.