In mathematics, extrapolation is a type of estimation, beyond the original observation range, of the value of a variable on the basis of its relationship with another variable. It is similar to interpolation, which produces estimates between known observations, but extrapolation is subject to greater uncertainty and a higher risk of producing meaningless results. Extrapolation may also mean extension of a method, assuming similar methods will be applicable. Extrapolation may also apply to human experience to project, extend, or expand known experience into an area not known or previously experienced so as to arrive at a (usually conjectural) knowledge of the unknown (e.g. a driver extrapolates road conditions beyond his sight while driving). The extrapolation method can be applied in the interior reconstruction problem.
A sound choice of which extrapolation method to apply relies on a priori knowledge of the process that created the existing data points. Some experts have proposed the use of causal forces in the evaluation of extrapolation methods. Crucial questions are, for example, if the data can be assumed to be continuous, smooth, possibly periodic, etc.
Linear extrapolation means creating a tangent line at the end of the known data and extending it beyond that limit. Linear extrapolation will only provide good results when used to extend the graph of an approximately linear function or not too far beyond the known data.
If the two data points nearest the point to be extrapolated are and , linear extrapolation gives the function:
(which is identical to linear interpolation if ). It is possible to include more than two points, and averaging the slope of the linear interpolant, by regression-like techniques, on the data points chosen to be included. This is similar to linear prediction.
A polynomial curve can be created through the entire known data or just near the end (two points for linear extrapolation, three points for quadratic extrapolation, etc.). The resulting curve can then be extended beyond the end of the known data.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
L'objectif de ce cours est d'étudier les différentes manifestations des mondes totalitaires dans la fiction. Plus précisément, nous regarderons comment les écrivains racontent l'aliénation de l'homme
This course introduces students to modern computational and mathematical techniques for solving problems in chemistry and chemical engineering. The use of introduced numerical methods will be demonstr
The "Introduction to Applied Data Science" (I2ADS) course is aimed at students of all levels to train them in the core computer science software stack and techniques forming the pillars of open & repr
Curve fitting is the process of constructing a curve, or mathematical function, that has the best fit to a series of data points, possibly subject to constraints. Curve fitting can involve either interpolation, where an exact fit to the data is required, or smoothing, in which a "smooth" function is constructed that approximately fits the data. A related topic is regression analysis, which focuses more on questions of statistical inference such as how much uncertainty is present in a curve that is fit to data observed with random errors.
In statistical modeling, regression analysis is a set of statistical processes for estimating the relationships between a dependent variable (often called the 'outcome' or 'response' variable, or a 'label' in machine learning parlance) and one or more independent variables (often called 'predictors', 'covariates', 'explanatory variables' or 'features'). The most common form of regression analysis is linear regression, in which one finds the line (or a more complex linear combination) that most closely fits the data according to a specific mathematical criterion.
In mathematics, a sequence transformation is an operator acting on a given space of sequences (a sequence space). Sequence transformations include linear mappings such as convolution with another sequence, and resummation of a sequence and, more generally, are commonly used for series acceleration, that is, for improving the rate of convergence of a slowly convergent sequence or series. Sequence transformations are also commonly used to compute the antilimit of a divergent series numerically, and are used in conjunction with extrapolation methods.
We analyze and implement the kernel ridge regression (KR) method developed in Filipovic et al. (Stripping the discount curve-a robust machine learning approach. Swiss Finance Institute Research Paper No. 22-24. SSRN. https://ssrn.com/abstract=4058150, 2022 ...
In this thesis, we conduct a comprehensive investigation into structural instabilities of both elastic and magneto-elastic beams and shells, resulting in a creative proposal to design a programmable braille reader. Methodologically, we combine numerical si ...
Second-order Moller-Plesset perturbation theory (MP2) is the most expedient wave function-based method for considering electron correlation in quantum chemical calculations and, as such, provides a cost-effective framework to assess the effects of basis se ...