Summary
In mathematics, extrapolation is a type of estimation, beyond the original observation range, of the value of a variable on the basis of its relationship with another variable. It is similar to interpolation, which produces estimates between known observations, but extrapolation is subject to greater uncertainty and a higher risk of producing meaningless results. Extrapolation may also mean extension of a method, assuming similar methods will be applicable. Extrapolation may also apply to human experience to project, extend, or expand known experience into an area not known or previously experienced so as to arrive at a (usually conjectural) knowledge of the unknown (e.g. a driver extrapolates road conditions beyond his sight while driving). The extrapolation method can be applied in the interior reconstruction problem. A sound choice of which extrapolation method to apply relies on a priori knowledge of the process that created the existing data points. Some experts have proposed the use of causal forces in the evaluation of extrapolation methods. Crucial questions are, for example, if the data can be assumed to be continuous, smooth, possibly periodic, etc. Linear extrapolation means creating a tangent line at the end of the known data and extending it beyond that limit. Linear extrapolation will only provide good results when used to extend the graph of an approximately linear function or not too far beyond the known data. If the two data points nearest the point to be extrapolated are and , linear extrapolation gives the function: (which is identical to linear interpolation if ). It is possible to include more than two points, and averaging the slope of the linear interpolant, by regression-like techniques, on the data points chosen to be included. This is similar to linear prediction. A polynomial curve can be created through the entire known data or just near the end (two points for linear extrapolation, three points for quadratic extrapolation, etc.). The resulting curve can then be extended beyond the end of the known data.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.