The Amundsen Sea is an arm of the Southern Ocean off Marie Byrd Land in western Antarctica. It lies between Cape Flying Fish (the northwestern tip of Thurston Island) to the east and Cape Dart on Siple Island to the west. Cape Flying Fish marks the boundary between the Amundsen Sea and the Bellingshausen Sea. West of Cape Dart there is no named marginal sea of the Southern Ocean between the Amundsen and Ross Seas. The Norwegian expedition of 1928–1929 under Captain Nils Larsen named the body of water for the Norwegian polar explorer Roald Amundsen while exploring this area in February 1929.
The sea is mostly ice-covered, and the Thwaites Ice Tongue protrudes into it. The ice sheet which drains into the Amundsen Sea averages about in thickness; roughly the size of the state of Texas, this area is known as the Amundsen Sea Embayment (ASE); it forms one of the three major ice-drainage basins of the West Antarctic Ice Sheet.
Rossby wave#Oceanic waves
The ice sheet that drains into the Amundsen Sea averages about in thickness. It is roughly the size of the state of Texas and is known as the Amundsen Sea Embayment (ASE); it forms one of the three major ice drainage basins of the West Antarctic Ice Sheet along with the Ross Sea Embayment and the Weddell Sea Embayment.
Some scientists proposed that this region may be a "weak underbelly" of the West Antarctic Ice Sheet. The Pine Island and Thwaites Glaciers, which both flow into the Amundsen Sea, are two of Antarctica's largest five. Researchers reported that the flow of these glaciers increased starting in the mid-2000s; if they were to melt completely, global sea levels would rise by about . Other researchers suggested that the loss of these glaciers would destabilise the entire West Antarctic ice sheet and possibly sections of the East Antarctic Ice Sheet.
A 2004 study suggested that because the ice in the Amundsen Sea had been melting rapidly and was riven with cracks, the offshore ice shelf was set to collapse "within five years".
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The course equips students with a comprehensive scientific understanding of climate change covering a wide range of topics from physical principles, historical climate change, greenhouse gas emissions
Antarctica (ænˈtɑːrktᵻkə) is Earth's southernmost and least-populated continent. Situated almost entirely south of the Antarctic Circle and surrounded by the Southern Ocean (also known as the Antarctic Ocean), it contains the geographic South Pole. Antarctica is the fifth-largest continent, being about 40% larger than Europe, and has an area of . Most of Antarctica is covered by the Antarctic ice sheet, with an average thickness of . Antarctica is, on average, the coldest, driest, and windiest of the continents, and it has the highest average elevation.
Between 1901 and 2018, the average global sea level rose by , or an average of 1–2 mm per year. This rate accelerated to 4.62 mm/yr for the decade 2013–2022. Climate change due to human activities is the main cause. Between 1993 and 2018, thermal expansion of water accounted for 42% of sea level rise. Melting temperate glaciers accounted for 21%, with Greenland accounting for 15% and Antarctica 8%. Sea level rise lags changes in the Earth's temperature.
The Antarctic ice sheet is one of the two polar ice caps of Earth. It covers about 98% of the Antarctic continent and is the largest single mass of ice on Earth, with an average thickness of over 2 kilometers. Separate to the Antarctic sea ice it covers an area of almost and contains of ice. A cubic kilometer of ice weighs approximately 0.92 metric gigatonnes, meaning that the ice sheet weighs about 24,380,000 gigatonnes. It holds approximately 61% of all fresh water on Earth, equivalent to about 58 meters of sea level rise if all the ice were above sea level.
Sublimation influences the water storage in snow covers and glaciers, which is important for water use and projections of the sea level rise. Yet, it is challenging to quantify sublimation for large areas or in conditions of snow transport. In-situ measure ...
EPFL2023
, , , , , , ,
Reliable predictions of sea level rise require a quantitative understanding of the mass balance of the Antarctic ice sheet. Water vapor exchange between snow and the atmospheric boundary layer may be an important term in the mass balance equation but curre ...
2023
This thesis is an in-depth treatment of water vapor transport in snowpacks and its impacts on snow structure. The aim is to better understand this transport process and to lay the basis for a model representation in physics-based multi-layer snow models. O ...