Summary
Between 1901 and 2018, the average global sea level rose by , or an average of 1–2 mm per year. This rate accelerated to 4.62 mm/yr for the decade 2013–2022. Climate change due to human activities is the main cause. Between 1993 and 2018, thermal expansion of water accounted for 42% of sea level rise. Melting temperate glaciers accounted for 21%, with Greenland accounting for 15% and Antarctica 8%. Sea level rise lags changes in the Earth's temperature. So sea level rise will continue to accelerate between now and 2050 in response to warming that is already happening. What happens after that will depend on what happens with human greenhouse gas emissions. Sea level rise may slow down between 2050 and 2100 if there are deep cuts in emissions. It could then reach a little over from now by 2100. With high emissions it may accelerate. It could rise by or even by then. In the long run, sea level rise would amount to over the next 2000 years if warming amounts to . It would be if warming peaks at . Rising seas ultimately impact every coastal and island population on Earth. This can be through flooding, higher storm surges, king tides, and tsunamis. These have many knock-on effects. They lead to loss of coastal ecosystems like mangroves. Crop production falls because of salinization of irrigation water. And damage to ports disrupts sea trade. The sea level rise projected by 2050 will expose places currently inhabited by tens of millions of people to annual flooding. Without a sharp reduction in greenhouse gas emissions, this may increase to hundreds of millions in the latter decades of the century. Areas not directly exposed to rising sea levels could be affected by large scale migrations and economic disruption. At the same time, local factors like tidal range or land subsidence, as well as the varying resilience and adaptive capacity of individual ecosystems, sectors, and countries will greatly affect the severity of impacts.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (7)
ENV-410: Science of climate change
The course equips students with a comprehensive scientific understanding of climate change covering a wide range of topics from physical principles, historical climate change, greenhouse gas emissions
ENV-525: Physics and hydrology of snow
This course covers principles of snow physics, snow hydrology, snow-atmosphere interaction and snow modeling. It transmits sound understanding of physical processes within the snow and at its interfac
HUM-471: Economic growth and sustainability I
This course examines growth from various angles: economic growth, growth in the use of resources, need for growth, limits to growth, sustainable growth, and, if time permits, population growth and gro
Show more
Related publications (289)