An anonymous remailer is a server that receives messages with embedded instructions on where to send them next, and that forwards them without revealing where they originally came from. There are cypherpunk anonymous remailers, mixmaster anonymous remailers, and nym servers, among others, which differ in how they work, in the policies they adopt, and in the type of attack on the anonymity of e-mail they can (or are intended to) resist. Remailing as discussed in this article applies to e-mails intended for particular recipients, not the general public. Anonymity in the latter case is more easily addressed by using any of several methods of anonymous publication.
There are several strategies that affect the anonymity of the handled e-mail. In general, different classes of anonymous remailers differ with regard to the choices their designers/operators have made. These choices can be influenced by the legal ramifications of operating specific types of remailers.
It must be understood that every data packet traveling on the Internet contains the node addresses (as raw IP bit strings) of both the sending and intended recipient nodes, and so no data packet can ever actually be anonymous at this level . In addition, all standards-based e-mail messages contain defined fields in their headers in which the source and transmitting entities (and Internet nodes as well) are required to be included.
Some remailers change both types of address in messages they forward, and the list of forwarding nodes in e-mail messages as well, as the message passes through; in effect, they substitute 'fake source addresses' for the originals. The 'IP source address' for that packet may become that of the remailer server itself, and within an e-mail message (which is usually several packets), a nominal 'user' on that server. Some remailers forward their anonymized e-mail to still other remailers, and only after several such hops is the e-mail actually delivered to the intended address.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
An anonymous P2P communication system is a peer-to-peer distributed application in which the nodes, which are used to share resources, or participants are anonymous or pseudonymous. Anonymity of participants is usually achieved by special routing overlay networks that hide the physical location of each node from other participants. Interest in anonymous P2P systems has increased in recent years for many reasons, ranging from the desire to share files without revealing one's network identity and risking litigation to distrust in governments, concerns over mass surveillance and data retention, and lawsuits against bloggers.
Privacy-enhancing technologies (PET) are technologies that embody fundamental data protection principles by minimizing personal data use, maximizing data security, and empowering individuals. PETs allow online users to protect the privacy of their personally identifiable information (PII), which is often provided to and handled by services or applications. PETs use techniques to minimize an information system's possession of personal data without losing functionality.
Internet privacy involves the right or mandate of personal privacy concerning the storage, re-purposing, provision to third parties, and display of information pertaining to oneself via the Internet. Internet privacy is a subset of data privacy. Privacy concerns have been articulated from the beginnings of large-scale computer sharing and especially relate to mass surveillance enabled by the emergence of computer technologies. Privacy can entail either personally identifiable information (PII) or non-PII information such as a site visitor's behaviour on a website.
This advanced course will provide students with the knowledge to tackle the design of privacy-preserving ICT systems. Students will learn about existing technologies to prect privacy, and how to evalu
With the pervasive digitalization of modern life, we benefit from efficient access to information and services. Yet, this digitalization poses severe privacy challenges, especially for special-needs individuals. Beyond being a fundamental human right, priv ...
Most communication systems (e.g., e-mails, instant messengers, VPNs) use encryption to prevent third parties from learning sensitive information.However, encrypted communications protect the contents but often leak metadata: the amount of data sent and the ...
EPFL2021
, , , ,
Distributed ledgers provide high availability and integrity, making them a key enabler for practical and secure computation of distributed workloads among mutually distrustful parties. Many practical applications also require strong confidentiality, howeve ...