Compton scattering (also called the Compton effect) discovered by Arthur Holly Compton, is the scattering of a high frequency photon after an interaction with a charged particle, usually an electron. It results in a decrease in energy (increase in wavelength) of the photon (which may be an X-ray or gamma ray photon), called the Compton effect. Part of the energy of the photon is transferred to the recoiling particle. Inverse Compton scattering has the opposite effect, occurring when a high-energy charged particle transfers part of its energy to a photon, resulting in an increase in energy (decrease in wavelength) of the photon.
Compton scattering is commonly described as inelastic scattering, because the energy in the scattered photon is less than the energy of the incident photon. Energy of the incident photon is transferred to the electron (recoil) but only as kinetic energy in the laboratory frame. The electron gains no internal energy, respective masses remain the same, the mark of an elastic collision. From this perspective, Compton scattering could be considered elastic because the internal state of the electron does not change during the scattering process.
Whether Compton scattering is considered elastic or inelastic depends on the specific definition of these terms being used.
In Compton's original experiment (see Fig. 1), the energy of the X ray photon (≈17 keV) was significantly larger than the binding energy of the atomic electron, so the electrons could be treated as being free after scattering. The amount by which the light's wavelength changes is called the Compton shift. Although nucleus Compton scattering exists, Compton scattering usually refers to the interaction involving only the electrons of an atom. The Compton effect was observed by Arthur Holly Compton in 1923 at Washington University in St. Louis and further verified by his graduate student Y. H. Woo in the years following. Compton was awarded the 1927 Nobel Prize in Physics for the discovery.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Lectures on the fundamental aspects of semiconductor physics and the main properties of the p-n junction that is at the heart of devices like LEDs & laser diodes. The last part deals with light-matter
The most important clinical diagnostic and therapeutic applications of light will be described. In addition, this course will address the principles governing the interactions between light and biolog
A gamma ray, also known as gamma radiation (symbol γ or ), is a penetrating form of electromagnetic radiation arising from the radioactive decay of atomic nuclei. It consists of the shortest wavelength electromagnetic waves, typically shorter than those of X-rays. With frequencies above 30 exahertz (3e19Hz), it imparts the highest photon energy. Paul Villard, a French chemist and physicist, discovered gamma radiation in 1900 while studying radiation emitted by radium.
Scattering is a term used in physics to describe a wide range of physical processes where moving particles or radiation of some form, such as light or sound, are forced to deviate from a straight trajectory by localized non-uniformities (including particles and radiation) in the medium through which they pass. In conventional use, this also includes deviation of reflected radiation from the angle predicted by the law of reflection.
Alpha particles, also called alpha rays or alpha radiation, consist of two protons and two neutrons bound together into a particle identical to a helium-4 nucleus. They are generally produced in the process of alpha decay, but may also be produced in other ways. Alpha particles are named after the first letter in the Greek alphabet, α. The symbol for the alpha particle is α or α2+. Because they are identical to helium nuclei, they are also sometimes written as He2+ or 42He2+ indicating a helium ion with a +2 charge (missing its two electrons).
Explores the optical properties of semiconductors, including absorption spectrum changes and exciton physics.
Explains neutron scattering variables, cross sections, and scattering processes.
Explores the historical perspective, properties, and applications of X-rays, including diffraction, atomic resolution, and spectral colors of elements.
Learn how principles of basic science are integrated into major biomedical imaging modalities and the different techniques used, such as X-ray computed tomography (CT), ultrasounds and positron emissi
In Part I of this paper, an inequality satisfied by the vacuum energy density of the universe was derived using an indirect and heuristic procedure. The derivation is based on a proposed thought experiment, according to which an electron is accelerated to ...
In this thesis, we discuss the problems of scattering and optical manipulation related to nanosystems of different complexities. The multipolar decomposition method is used to represent scattering processes in nanosystems as a series of elementary excitati ...
EPFL2023
Quenched disorder slows down the scrambling of quantum information. Using a bottom-up approach, we formulate a kinetic theory of scrambling in a correlated metal near a superconducting transition, following the scrambling dynamics as the impurity scatterin ...