Strontium-90 () is a radioactive isotope of strontium produced by nuclear fission, with a half-life of 28.8 years. It undergoes β− decay into yttrium-90, with a decay energy of 0.546 MeV. Strontium-90 has applications in medicine and industry and is an isotope of concern in fallout from nuclear weapons, nuclear weapons testing, and nuclear accidents.
Naturally occurring strontium is nonradioactive and nontoxic at levels normally found in the environment, but 90Sr is a radiation hazard. 90Sr undergoes β− decay with a half-life of 28.79 years and a decay energy of 0.546 MeV distributed to an electron, an antineutrino, and the yttrium isotope 90Y, which in turn undergoes β− decay with a half-life of 64 hours and a decay energy of 2.28 MeV distributed to an electron, an antineutrino, and 90Zr (zirconium), which is stable. Note that 90Sr/Y is almost a pure beta particle source; the gamma photon emission from the decay of 90Y is so infrequent that it can normally be ignored.
90Sr has a specific activity of 5.21 TBq/g.
90Sr is a product of nuclear fission. It is present in significant amount in spent nuclear fuel, in radioactive waste from nuclear reactors and in nuclear fallout from nuclear tests.
For thermal neutron fission as in today's nuclear power plants, the fission product yield from uranium-235 is 5.7%, from uranium-233 6.6%, but from plutonium-239 only 2.0%.
Strontium-90 is classified as high-level waste. Its 29-year half-life means that it can take hundreds of years to decay to negligible levels. Exposure from contaminated water and food may increase the risk of leukemia and bone cancer.
Algae has shown selectivity for strontium in studies, where most plants used in bioremediation have not shown selectivity between calcium and strontium, often becoming saturated with calcium, which is greater in quantity and also present in nuclear waste.
Researchers have looked at the bioaccumulation of strontium by Scenedesmus spinosus (algae) in simulated wastewater. The study claims a highly selective biosorption capacity for strontium of S.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Nuclear fission splits a heavy nucleus such as uranium or plutonium into two lighter nuclei, which are called fission products. Yield refers to the fraction of a fission product produced per fission. Yield can be broken down by: Individual isotope Chemical element spanning several isotopes of different mass number but same atomic number. Nuclei of a given mass number regardless of atomic number. Known as "chain yield" because it represents a decay chain of beta decay.
Yttrium is a chemical element with the symbol Y and atomic number 39. It is a silvery-metallic transition metal chemically similar to the lanthanides and has often been classified as a "rare-earth element". Yttrium is almost always found in combination with lanthanide elements in rare-earth minerals and is never found in nature as a free element. 89Y is the only stable isotope and the only isotope found in the Earth's crust. The most important present-day use of yttrium is as a component of phosphors, especially those used in LEDs.
Nuclear transmutation is the conversion of one chemical element or an isotope into another chemical element. Nuclear transmutation occurs in any process where the number of protons or neutrons in the nucleus of an atom is changed. A transmutation can be achieved either by nuclear reactions (in which an outside particle reacts with a nucleus) or by radioactive decay, where no outside cause is needed.
Analyzes the total cross section data for nuclear fission, covering energy dependence, transport, reactions, uncertainties, fission fragments, and radiological hazards.
All chemical vapor deposition (CVD) processes rely on the adsorption and decomposition of precursors on a substrate to deposit the desired material. The growth rate of the film is determined by the surface kinetics of the utilized precursor molecules and g ...
To predict hydrologic responses to inputs and perturbations, it is important to understand how precipitation is stored in catchments, released back to the atmosphere via evapotranspiration (ET), or transported to aquifers and streams. We investigated this ...
The reactivity loss of PWR fuel with burnup has been investigated experimentally by measuring the reactivity worths of highly-burnt fuel samples in a PWR test lattice in the framework of the LWR-PROTEUS Phase II program. Seven UO2 samples cut from fuel rod ...