Summary
The Rubin causal model (RCM), also known as the Neyman–Rubin causal model, is an approach to the statistical analysis of cause and effect based on the framework of potential outcomes, named after Donald Rubin. The name "Rubin causal model" was first coined by Paul W. Holland. The potential outcomes framework was first proposed by Jerzy Neyman in his 1923 Master's thesis, though he discussed it only in the context of completely randomized experiments. Rubin extended it into a general framework for thinking about causation in both observational and experimental studies. The Rubin causal model is based on the idea of potential outcomes. For example, a person would have a particular income at age 40 if they had attended college, whereas they would have a different income at age 40 if they had not attended college. To measure the causal effect of going to college for this person, we need to compare the outcome for the same individual in both alternative futures. Since it is impossible to see both potential outcomes at once, one of the potential outcomes is always missing. This dilemma is the "fundamental problem of causal inference." Because of the fundamental problem of causal inference, unit-level causal effects cannot be directly observed. However, randomized experiments allow for the estimation of population-level causal effects. A randomized experiment assigns people randomly to treatments: college or no college. Because of this random assignment, the groups are (on average) equivalent, and the difference in income at age 40 can be attributed to the college assignment since that was the only difference between the groups. An estimate of the average causal effect (also referred to as the average treatment effect or ATE) can then be obtained by computing the difference in means between the treated (college-attending) and control (not-college-attending) samples. In many circumstances, however, randomized experiments are not possible due to ethical or practical concerns. In such scenarios there is a non-random assignment mechanism.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.