Summary
Complex traits, also known as quantitative traits, are traits that do not behave according to simple Mendelian inheritance laws. More specifically, their inheritance cannot be explained by the genetic segregation of a single gene. Such traits show a continuous range of variation and are influenced by both environmental and genetic factors. Compared to strictly Mendelian traits, complex traits are far more common, and because they can be hugely polygenic, they are studied using statistical techniques such as quantitative genetics and quantitative trait loci (QTL) mapping rather than classical genetics methods. Examples of complex traits include height, circadian rhythms, enzyme kinetics, and many diseases including diabetes and Parkinson's disease. One major goal of genetic research today is to better understand the molecular mechanisms through which genetic variants act to influence complex traits. History of genetics When Mendel's work on inheritance was rediscovered in 1900, scientists debated whether Mendel's laws could account for the continuous variation observed for many traits. One group known as the biometricians argued that continuous traits such as height were largely heritable, but could not be explained by the inheritance of single Mendelian genetic factors. Work published by Ronald Fisher in 1919 mostly resolved debate by demonstrating that the variation in continuous traits could be accounted for if multiple such factors contributed additively to each trait. However, the number of genes involved in such traits remained undetermined; until recently, genetic loci were expected to have moderate effect sizes and each explain several percent of heritability. After the conclusion of the Human Genome Project in 2001, it seemed that the sequencing and mapping of many individuals would soon allow for a complete understanding of traits’ genetic architectures. However, variants discovered through genome-wide association studies (GWASs) accounted for only a small percentage of predicted heritability; for example, while height is estimated to be 80-90% heritable, early studies only identified variants accounting for 5% of this heritability.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (3)
Related concepts (10)
Complex traits
Complex traits, also known as quantitative traits, are traits that do not behave according to simple Mendelian inheritance laws. More specifically, their inheritance cannot be explained by the genetic segregation of a single gene. Such traits show a continuous range of variation and are influenced by both environmental and genetic factors. Compared to strictly Mendelian traits, complex traits are far more common, and because they can be hugely polygenic, they are studied using statistical techniques such as quantitative genetics and quantitative trait loci (QTL) mapping rather than classical genetics methods.
Quantitative genetics
Quantitative genetics deals with quantitative traits, which are phenotypes that vary continuously (such as height or mass)—as opposed to discretely identifiable phenotypes and gene-products (such as eye-colour, or the presence of a particular biochemical). Both branches use the frequencies of different alleles of a gene in breeding populations (gamodemes), and combine them with concepts from simple Mendelian inheritance to analyze inheritance patterns across generations and descendant lines.
Gene–environment interaction
Gene–environment interaction (or genotype–environment interaction or G×E) is when two different genotypes respond to environmental variation in different ways. A norm of reaction is a graph that shows the relationship between genes and environmental factors when phenotypic differences are continuous. They can help illustrate GxE interactions. When the norm of reaction is not parallel, as shown in the figure below, there is a gene by environment interaction. This indicates that each genotype responds to environmental variation in a different way.
Show more
Related courses (3)
BIOENG-110: General Biology
Le but du cours est de fournir un aperçu général de la biologie des cellules et des organismes. Nous en discuterons dans le contexte de la vie des cellules et des organismes, en mettant l'accent sur l
BIO-373: Genetics and genomics
The theoretical part of this course covers classical genetics and contemporary genomics. Because bioinformatics has become important for genomic research, the course also includes practical applicatio
BIO-480: Neuroscience: from molecular mechanisms to disease
The goal of the course is to guide students through the essential aspects of molecular neuroscience and neurodegenerative diseases. The student will gain the ability to dissect the molecular basis of