Summary
Complex traits, also known as quantitative traits, are traits that do not behave according to simple Mendelian inheritance laws. More specifically, their inheritance cannot be explained by the genetic segregation of a single gene. Such traits show a continuous range of variation and are influenced by both environmental and genetic factors. Compared to strictly Mendelian traits, complex traits are far more common, and because they can be hugely polygenic, they are studied using statistical techniques such as quantitative genetics and quantitative trait loci (QTL) mapping rather than classical genetics methods. Examples of complex traits include height, circadian rhythms, enzyme kinetics, and many diseases including diabetes and Parkinson's disease. One major goal of genetic research today is to better understand the molecular mechanisms through which genetic variants act to influence complex traits. History of genetics When Mendel's work on inheritance was rediscovered in 1900, scientists debated whether Mendel's laws could account for the continuous variation observed for many traits. One group known as the biometricians argued that continuous traits such as height were largely heritable, but could not be explained by the inheritance of single Mendelian genetic factors. Work published by Ronald Fisher in 1919 mostly resolved debate by demonstrating that the variation in continuous traits could be accounted for if multiple such factors contributed additively to each trait. However, the number of genes involved in such traits remained undetermined; until recently, genetic loci were expected to have moderate effect sizes and each explain several percent of heritability. After the conclusion of the Human Genome Project in 2001, it seemed that the sequencing and mapping of many individuals would soon allow for a complete understanding of traits’ genetic architectures. However, variants discovered through genome-wide association studies (GWASs) accounted for only a small percentage of predicted heritability; for example, while height is estimated to be 80-90% heritable, early studies only identified variants accounting for 5% of this heritability.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood