Guanylate cyclase (EC 4.6.1.2, also known as guanyl cyclase, guanylyl cyclase, or GC; systematic name GTP diphosphate-lyase (cyclizing; 3′,5′-cyclic-GMP-forming)) is a lyase enzyme that converts guanosine triphosphate (GTP) to cyclic guanosine monophosphate (cGMP) and pyrophosphate:
GTP = 3′,5′-cyclic GMP + diphosphate
It is often part of the G protein signaling cascade that is activated by low intracellular calcium levels and inhibited by high intracellular calcium levels. In response to calcium levels, guanylate cyclase synthesizes cGMP from GTP. cGMP keeps cGMP-gated channels open, allowing for the entry of calcium into the cell.
Like cAMP, cGMP is an important second messenger that internalizes the message carried by intercellular messengers such as peptide hormones and nitric oxide and can also function as an autocrine signal. Depending on cell type, it can drive adaptive/developmental changes requiring protein synthesis. In smooth muscle, cGMP is the signal for relaxation, and is coupled to many homeostatic mechanisms including regulation of vasodilation, vocal tone, insulin secretion, and peristalsis. Once formed, cGMP can be degraded by phosphodiesterases, which themselves are under different forms of regulation, depending on the tissue.
Guanylate cyclase catalyzes the reaction of guanosine triphosphate (GTP) to 3',5'-cyclic guanosine monophosphate (cGMP) and pyrophosphate:
Image:Guanosintriphosphat_protoniert.svg|[[Guanosine triphosphate|GTP]]
Image:CGMP.svg|[[Cyclic guanosine monophosphate|cGMP]]
Guanylate cyclase is found in the retina (RETGC) and modulates visual phototransduction in rods and cones. It is part of the calcium negative feedback system that is activated in response to the hyperpolarization of the photoreceptors by light. This causes less intracellular calcium, which stimulates guanylate cyclase-activating proteins (GCAPs). Studies have shown that cGMP synthesis in cones is about 5-10 times higher than it is in rods, which may play an important role in modulating cone adaption to light.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In biology, cell signaling (cell signalling in British English) or cell communication is the ability of a cell to receive, process, and transmit signals with its environment and with itself. Cell signaling is a fundamental property of all cellular life in prokaryotes and eukaryotes. Signals that originate from outside a cell (or extracellular signals) can be physical agents like mechanical pressure, voltage, temperature, light, or chemical signals (e.g., small molecules, peptides, or gas).
Cyclic nucleotide–gated ion channels or CNG channels are ion channels that function in response to the binding of cyclic nucleotides. CNG channels are nonselective cation channels that are found in the membranes of various tissue and cell types, and are significant in sensory transduction as well as cellular development. Their function can be the result of a combination of the binding of cyclic nucleotides (cGMP and cAMP) and either a depolarization or a hyperpolarization event.
Cyclic guanosine monophosphate (cGMP) is a cyclic nucleotide derived from guanosine triphosphate (GTP). cGMP acts as a second messenger much like cyclic AMP. Its most likely mechanism of action is activation of intracellular protein kinases in response to the binding of membrane-impermeable peptide hormones to the external cell surface. Through protein kinases activation, cGMP can relax smooth muscle. cGMP concentration in urine can be measured for kidney function and diabetes detection.
Explores the basics and structures of G protein-coupled receptors, covering signaling schemes, structures, historical background, drug targeting, and recent advancements.
Lung cancer is the leading cause of cancer-related deaths worldwide and the most commonlung cancer subtype is lung adenocarcinoma (LUAD). Frequently mutated genes involveactivating mutations in KRAS and loss of function mutations in TP53. LUADs primarily a ...
Conversion of adenosine triphosphate (ATP) to the second messenger cyclic adenosine monophosphate (cAMP) is an essential reaction mechanism that takes place in eukaryotes, triggering a variety of signal transduction pathways. ATP conversion is catalyzed by ...
We designed and tested a device to stimulate specifically one photoreceptor type, or a combination of some of them, of the human eye by using up to six primaries. The device produces a homogeneous light field over 40 degrees which is projected onto the ret ...