The mean absolute difference (univariate) is a measure of statistical dispersion equal to the average absolute difference of two independent values drawn from a probability distribution. A related statistic is the relative mean absolute difference, which is the mean absolute difference divided by the arithmetic mean, and equal to twice the Gini coefficient.
The mean absolute difference is also known as the absolute mean difference (not to be confused with the absolute value of the mean signed difference) and the Gini mean difference (GMD). The mean absolute difference is sometimes denoted by Δ or as MD.
The mean absolute difference is defined as the "average" or "mean", formally the expected value, of the absolute difference of two random variables X and Y independently and identically distributed with the same (unknown) distribution henceforth called Q.
Specifically, in the discrete case,
For a random sample of size n of a population distributed uniformly according to Q, by the law of total expectation the (empirical) mean absolute difference of the sequence of sample values yi, i = 1 to n can be calculated as the arithmetic mean of the absolute value of all possible differences:
if Q has a discrete probability function f(y), where yi, i = 1 to n, are the values with nonzero probabilities:
In the continuous case,
if Q has a probability density function f(x):
An alternative form of the equation is given by:
if Q has a cumulative distribution function F(x) with quantile function Q(F), then, since f(x)=dF(x)/dx and Q(F(x))=x, it follows that:
When the probability distribution has a finite and nonzero arithmetic mean AM, the relative mean absolute difference, sometimes denoted by Δ or RMD, is defined by
The relative mean absolute difference quantifies the mean absolute difference in comparison to the size of the mean and is a dimensionless quantity. The relative mean absolute difference is equal to twice the Gini coefficient which is defined in terms of the Lorenz curve.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course is devoted to the psychology of risk (How do people make decisions in real-life situations characterized by risk and/or uncertainty?) and to risk competencies (How to make better decisions
Le but du cours de physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de pr
Machine learning and data analysis are becoming increasingly central in sciences including physics. In this course, fundamental principles and methods of machine learning will be introduced and practi
In statistics, dispersion (also called variability, scatter, or spread) is the extent to which a distribution is stretched or squeezed. Common examples of measures of statistical dispersion are the variance, standard deviation, and interquartile range. For instance, when the variance of data in a set is large, the data is widely scattered. On the other hand, when the variance is small, the data in the set is clustered. Dispersion is contrasted with location or central tendency, and together they are the most used properties of distributions.
In descriptive statistics, summary statistics are used to summarize a set of observations, in order to communicate the largest amount of information as simply as possible. Statisticians commonly try to describe the observations in a measure of location, or central tendency, such as the arithmetic mean a measure of statistical dispersion like the standard mean absolute deviation a measure of the shape of the distribution like skewness or kurtosis if more than one variable is measured, a measure of statistical dependence such as a correlation coefficient A common collection of order statistics used as summary statistics are the five-number summary, sometimes extended to a seven-number summary, and the associated box plot.
The average absolute deviation (AAD) of a data set is the average of the absolute deviations from a central point. It is a summary statistic of statistical dispersion or variability. In the general form, the central point can be a mean, median, mode, or the result of any other measure of central tendency or any reference value related to the given data set. AAD includes the mean absolute deviation and the median absolute deviation (both abbreviated as MAD). Several measures of statistical dispersion are defined in terms of the absolute deviation.
A geometric method of lattice reduction based on cycles of directional and hyperplanar shears is presented. The deviation from cubicity at each step of the reduction is evaluated by a parameter called 'basis rhombicity' which is the sum of the absolute val ...
Second-order Moller-Plesset perturbation theory (MP2) is the most expedient wave function-based method for considering electron correlation in quantum chemical calculations and, as such, provides a cost-effective framework to assess the effects of basis se ...
Washington2023
, ,
The dynamics of neuron populations during diverse tasks often evolve on low-dimensional manifolds. However, it remains challenging to discern the contributions of geometry and dynamics for encoding relevant behavioural variables. Here, we introduce an unsu ...