**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Person# Friedrich Eisenbrand

Biography

Friedrich Eisenbrand's main research interests lie in the field of discrete optimization, in particular in algorithms and complexity, integer programming, geometry of numbers, and applied optimization. He is best known for his work on efficient algorithms for integer programming in fixed dimension and the theory of cutting planes, which are an important tool to solve large scale industrial optimization problems in practice.

Before joining EPFL in March 2008, Friedrich Eisenbrand was a full professor of mathematics at the University of Paderborn. Friedrich received the Heinz Maier-Leibnitz award of the German Research Foundation (DFG) in 2004 and the Otto Hahn medal of the Max Planck Society in 2001.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related units

Loading

Courses taught by this person

Loading

Related research domains

Loading

Related publications

Loading

People doing similar research

Loading

Related units (6)

Related research domains (25)

Linear programming

Linear programming (LP), also called linear optimization, is a method to achieve the best outcome (such as maximum profit or lowest cost) in a mathematical model whose requirements are represented

Algorithm

In mathematics and computer science, an algorithm (ˈælɡərɪðəm) is a finite sequence of rigorous instructions, typically used to solve a class of specific problems or to perform a computation. Algo

Approximation algorithm

In computer science and operations research, approximation algorithms are efficient algorithms that find approximate solutions to optimization problems (in particular NP-hard problems) with provable

Related publications (75)

Loading

Loading

Loading

People doing similar research (109)

Courses taught by this person (5)

MATH-115(a): Advanced linear algebra II

L'objectif du cours est d'introduire les notions de base de l'algèbre linéaire et de démontrer rigoureusement les résultats principaux de ce sujet.

MATH-504: Integer optimisation

The course aims to introduce the basic concepts and results of integer optimization with special emphasis on algorithmic problems on lattices that have proved to be important in theoretical computer science and cryptography during the past 30 years.

MATH-513: Metric embeddings

The course aims to introduce the basic concepts and results on metric embeddings, or more precisely on approximate embeddings. This area has been under rapid development since the 90's and it has strong impact on algorithms for discrete optimization problems.

Friedrich Eisenbrand, Moritz Andreas Venzin

We show that a constant factor approximation of the shortest and closest lattice vector problem in any l(p)-norm can be computed in time 2((0.802 + epsilon)n). This matches the currently fastest constant factor approximation algorithm for the shortest vector problem in the l(2) norm. To obtain our result, we combine the latter algorithm for l(2) with geometric insights related to coverings. (C) 2021 Published by Elsevier Inc.

Friedrich Eisenbrand, Raimon Fabregat I De Aguilar-Amat, Puck Elisabeth van Gerwen

Supervised and unsupervised kernel-based algorithms widely used in the physical sciences depend upon the notion of similarity. Their reliance on pre-defined distance metrics-e.g. the Euclidean or Manhattan distance-are problematic especially when used in combination with high-dimensional feature vectors for which the similarity measure does not well-reflect the differences in the target property. Metric learning is an elegant approach to surmount this shortcoming and find a property-informed transformation of the feature space. We propose a new algorithm for metric learning specifically adapted for kernel ridge regression (KRR): metric learning for kernel ridge regression (MLKRR). It is based on the Metric Learning for Kernel Regression framework using the Nadaraya-Watson estimator, which we show to be inferior to the KRR estimator for typical physics-based machine learning tasks. The MLKRR algorithm allows for superior predictive performance on the benchmark regression task of atomisation energies of QM9 molecules, as well as generating more meaningful low-dimensional projections of the modified feature space.

Jana Tabea Cslovjecsek, Friedrich Eisenbrand, Moritz Andreas Venzin

We consider the problem of solving integer programs of the form min {c^⊺ x : Ax = b, x ∈ ℤ_{⩾ 0}}, where A is a multistage stochastic matrix in the following sense: the primal treedepth of A is bounded by a parameter d, which means that the columns of A can be organized into a rooted forest of depth at most d so that columns not bound by the ancestor/descendant relation do not have non-zero entries in the same row. We give an algorithm that solves this problem in fixed-parameter time f(d,‖A‖*{∞})⋅ nlog^{𝒪(2^d)} n, where f is a computable function and n is the number of rows of A. The algorithm works in the strong model, where the running time only measures unit arithmetic operations on the input numbers and does not depend on their bitlength. This is the first fpt algorithm for multistage stochastic integer programming to achieve almost linear running time in the strong sense. For two-stage stochastic integer programs, our algorithm works in time 2^{((r+s)‖A‖**∞)^{𝒪(r(r+s))}}⋅ nlog^{𝒪(rs)} n, which improves over previous methods both in terms of the polynomial factor and in terms of the dependence on r and s. In fact, for r = 1 the dependence on s is asymptotically almost tight assuming the Exponential Time Hypothesis. Our algorithm can be also parallelized: we give an implementation in the PRAM model that achieves running time f(d,‖A‖*{∞})⋅ log^{𝒪(2^d)} n using n processors. The main conceptual ingredient in our algorithms is a new proximity result for multistage stochastic integer programs. We prove that if we consider an integer program P, say with a constraint matrix A, then for every optimum solution to the linear relaxation of P there exists an optimum (integral) solution to P that lies, in the 𝓁{∞}-norm, within distance bounded by a function of ‖A‖_{∞} and the primal treedepth of A. On the way to achieve this result, we prove a generalization and considerable improvement of a structural result of Klein for multistage stochastic integer programs. Once the proximity results are established, this allows us to apply a treedepth-based branching strategy guided by an optimum solution to the linear relaxation. LIPIcs, Vol. 204, 29th Annual European Symposium on Algorithms (ESA 2021), pages 33:1-33:14