In mathematics, a relation on a set is called connected or complete or total if it relates (or "compares") all pairs of elements of the set in one direction or the other while it is called strongly connected if it relates pairs of elements. As described in the terminology section below, the terminology for these properties is not uniform. This notion of "total" should not be confused with that of a total relation in the sense that for all there is a so that (see serial relation).
Connectedness features prominently in the definition of total orders: a total (or linear) order is a partial order in which any two elements are comparable; that is, the order relation is connected. Similarly, a strict partial order that is connected is a strict total order.
A relation is a total order if and only if it is both a partial order and strongly connected. A relation is a strict total order if, and only if, it is a strict partial order and just connected. A strict total order can never be strongly connected (except on an empty domain).
A relation on a set is called when for all
or, equivalently, when for all
A relation with the property that for all
is called .
The main use of the notion of connected relation is in the context of orders, where it is used to define total, or linear, orders. In this context, the property is often not specifically named. Rather, total orders are defined as partial orders in which any two elements are comparable.
Thus, is used more generally for relations that are connected or strongly connected. However, this notion of "total relation" must be distinguished from the property of being serial, which is also called total. Similarly, connected relations are sometimes called , although this, too, can lead to confusion: The universal relation is also called complete, and "complete" has several other meanings in order theory.
Connected relations are also called or said to satisfy (although the more common definition of trichotomy is stronger in that of the three options must hold).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
La Physique Générale I (avancée) couvre la mécanique du point et du solide indéformable. Apprendre la mécanique, c'est apprendre à mettre sous forme mathématique un phénomène physique, en modélisant l
In mathematics, a homogeneous relation (also called endorelation) on a set X is a binary relation between X and itself, i.e. it is a subset of the Cartesian product X × X. This is commonly phrased as "a relation on X" or "a (binary) relation over X". An example of a homogeneous relation is the relation of kinship, where the relation is between people. Common types of endorelations include orders, graphs, and equivalences. Specialized studies of order theory and graph theory have developed understanding of endorelations.
In mathematics, a relation R on a set X is transitive if, for all elements a, b, c in X, whenever R relates a to b and b to c, then R also relates a to c. Each partial order as well as each equivalence relation needs to be transitive. A homogeneous relation R on the set X is a transitive relation if, for all a, b, c ∈ X, if a R b and b R c, then a R c. Or in terms of first-order logic: where a R b is the infix notation for (a, b) ∈ R. As a non-mathematical example, the relation "is an ancestor of" is transitive.
In mathematics, an asymmetric relation is a binary relation on a set where for all if is related to then is not related to A binary relation on is any subset of Given write if and only if which means that is shorthand for The expression is read as " is related to by " The binary relation is called if for all if is true then is false; that is, if then This can be written in the notation of first-order logic as A logically equivalent definition is: for all at least one of and is , which in first-order logic c
We explore statistical physics in both classical and open quantum systems. Additionally, we will cover probabilistic data analysis that is extremely useful in many applications.
We explore statistical physics in both classical and open quantum systems. Additionally, we will cover probabilistic data analysis that is extremely useful in many applications.
Organisé en deux parties, ce cours présente les bases théoriques et pratiques des systèmes d’information géographique, ne nécessitant pas de connaissances préalables en informatique. En suivant cette
Interface stress is a fundamental descriptor for interphase boundaries and is defined in strict relation to the interface energy. In nanomultilayers with their intrinsically high interface density, the functional properties are dictated by the interface st ...
Explores linear regression from a statistical inference perspective, covering probabilistic models, ground truth, labels, and maximum likelihood estimators.
We discuss two extensions to a recently introduced theory of arrays, which are based on considerations coming from the model theory of power structures. First, we discuss how the ordering relation on the index set can be expressed succinctly by referring t ...
We prove an NP upper bound on a theory of integer-indexed integer-valued arrays that extends combi- natory array logic with an ordering relation on the index set and the ability to express sums of elements. We compare our fragment with seven other fragment ...