Summary
The instruction cycle (also known as the fetch–decode–execute cycle, or simply the fetch-execute cycle) is the cycle that the central processing unit (CPU) follows from boot-up until the computer has shut down in order to process instructions. It is composed of three main stages: the fetch stage, the decode stage, and the execute stage. In simpler CPUs, the instruction cycle is executed sequentially, each instruction being processed before the next one is started. In most modern CPUs, the instruction cycles are instead executed concurrently, and often in parallel, through an instruction pipeline: the next instruction starts being processed before the previous instruction has finished, which is possible because the cycle is broken up into separate steps. The program counter (PC) is a special register that holds the memory address of the next instruction to be executed. During the fetch stage, the address stored in the PC is copied into the memory address register (MAR) and then the PC is incremented in order to "point" to the memory address of the next instruction to be executed. The CPU then takes the instruction at the memory address described by the MAR and copies it into the memory data register (MDR). The MDR also acts as a two-way register that holds data fetched from memory or data waiting to be stored in memory (it is also known as the memory buffer register (MBR) because of this). Eventually, the instruction in the MDR is copied into the current instruction register (CIR) which acts as a temporary holding ground for the instruction that has just been fetched from memory. During the decode stage, the control unit (CU) will decode the instruction in the CIR. The CU then sends signals to other components within the CPU, such as the arithmetic logic unit (ALU) and the floating point unit (FPU). The ALU performs arithmetic operations such as addition and subtraction and also multiplication via repeated addition and division via repeated subtraction. It also performs logic operations such as AND, OR, NOT, and binary shifts as well.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.